Suppr超能文献

预测局部晚期非小细胞肺癌放疗后的不良心脏事件

Predicting Adverse Cardiac Events After Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer.

作者信息

No Hyunsoo Joshua, Guo Felicia B, Park Natalie Jung-In, Kastelowitz Noah, Rhee June-Wha, Clark Daniel Eugene, Chin Alexander Li-Che, Vitzthum Lucas Kas, Horst Kathleen Claire, Moding Everett James, Loo Billy W, Diehn Maximilian, Binkley Michael Sargent

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA.

University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.

出版信息

JACC CardioOncol. 2023 Oct 4;5(6):775-787. doi: 10.1016/j.jaccao.2023.08.007. eCollection 2023 Dec.

Abstract

BACKGROUND

Radiotherapy may cause grade ≥3 cardiac events, necessitating a better understanding of risk factors. The potential predictive role of imaging biomarkers with radiotherapy doses for cardiac event occurrence has not been studied.

OBJECTIVES

The aim of this study was to establish the associations between cardiac substructure dose and coronary artery calcium (CAC) scores and cardiac event occurrence.

METHODS

A retrospective cohort analysis included patients with locally advanced non-small cell lung cancer treated with radiotherapy (2006-2018). Cardiac substructures, including the left anterior descending coronary artery, left main coronary artery, left circumflex coronary artery, right coronary artery, and TotalLeft (left anterior descending, left main, and left circumflex coronary arteries), were contoured. Doses were measured in 2-Gy equivalent units, and visual CAC scoring was compared with automated scoring. Grade ≥3 adverse cardiac events were recorded. Time-dependent receiver-operating characteristic modeling, the log-rank statistic, and competing-risk models were used to measure prediction performance, threshold modeling, and the cumulative incidence of cardiac events, respectively.

RESULTS

Of the 233 eligible patients, 61.4% were men, with a median age of 68.1 years (range: 34.9-90.7 years). The median follow-up period was 73.7 months (range: 1.6-153.9 months). Following radiotherapy, 22.3% experienced cardiac events, within a median time of 21.5 months (range: 1.7-118.9 months). Visual CAC scoring showed significant correlation with automated scoring ( = 0.72;  < 0.001). In a competing-risk multivariable model, TotalLeft volume receiving 15 Gy (per 1 cc; HR: 1.38; 95% CI: 1.11-1.72;  = 0.004) and CAC score >5 (HR: 2.51; 95% CI: 1.08-5.86;  = 0.033) were independently associated with cardiac events. A model incorporating age, TotalLeft CAC (score >5), and volume receiving 15 Gy demonstrated a higher incidence of cardiac events for a high-risk group (28.9%) compared with a low-risk group (6.9%) ( < 0.001).

CONCLUSIONS

Adverse cardiac events associated with radiation occur in more than 20% of patients undergoing thoracic radiotherapy within a median time of <2 years. The present findings provide further evidence to support significant associations between TotalLeft radiotherapy dose and cardiac events and define CAC as a predictive risk factor.

摘要

背景

放射治疗可能导致≥3级心脏事件,因此有必要更好地了解风险因素。尚未研究影像生物标志物与放射治疗剂量对心脏事件发生的潜在预测作用。

目的

本研究旨在确定心脏亚结构剂量与冠状动脉钙化(CAC)评分以及心脏事件发生之间的关联。

方法

一项回顾性队列分析纳入了接受放射治疗(2006 - 2018年)的局部晚期非小细胞肺癌患者。勾勒出心脏亚结构,包括左前降支冠状动脉、左主干冠状动脉、左旋支冠状动脉、右冠状动脉以及TotalLeft(左前降支、左主干和左旋支冠状动脉)。剂量以2戈瑞等效单位测量,并将视觉CAC评分与自动评分进行比较。记录≥3级不良心脏事件。分别使用时间依赖性受试者操作特征建模、对数秩统计和竞争风险模型来测量预测性能、阈值建模以及心脏事件的累积发生率。

结果

在233例符合条件的患者中,61.4%为男性,中位年龄为68.1岁(范围:34.9 - 90.7岁)。中位随访期为73.7个月(范围:1.6 - 153.9个月)。放射治疗后,22.3%的患者发生心脏事件,中位时间为21.5个月(范围:1.7 - 118.9个月)。视觉CAC评分与自动评分显示出显著相关性( = 0.72; < 0.001)。在竞争风险多变量模型中,接受15戈瑞的TotalLeft体积(每1立方厘米;HR:1.38;95%CI:1.11 - 1.72; = 0.004)和CAC评分>5(HR:2.51;95%CI:1.08 - 5.86; = 0.033)与心脏事件独立相关。一个纳入年龄、TotalLeft CAC(评分>5)和接受15戈瑞体积的模型显示,高危组(28.9%)的心脏事件发生率高于低危组(6.9%)( < 0.001)。

结论

在中位时间<2年的情况下,超过20%接受胸部放射治疗的患者发生了与放射相关的不良心脏事件。本研究结果提供了进一步的证据,支持TotalLeft放射治疗剂量与心脏事件之间的显著关联,并将CAC定义为一个预测性风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a4a/10774791/08a3d8e6154c/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验