Suppr超能文献

利用有信息价值的缺失数据了解大流行期间长期住院的 COVID-19 患者的急性呼吸窘迫综合征和死亡率。

Leveraging informative missing data to learn about acute respiratory distress syndrome and mortality in long-term hospitalized COVID-19 patients throughout the years of the pandemic.

机构信息

Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:942-950. eCollection 2023.

Abstract

Electronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities and best practices for monitoring patients, which could save lives and reduce burden on the healthcare system. We characterize patterns of missing data in laboratory measurements collected at the University of Pennsylvania Hospital System from long-term COVID-19 patients and focus on the changes in these patterns between 2020 and 2021. We investigate how these patterns are associated with comorbidities such as acute respiratory distress syndrome (ARDS), and 90-day mortality in ARDS patients. This work displays how knowledge and experience can change the way clinicians and hospitals manage a novel disease. It can also provide insight into best practices when it comes to patient monitoring to improve outcomes.

摘要

电子健康记录 (EHR) 包含大量可用于进一步实现精准医疗的信息。EHR 中一个特别的数据元素不仅未得到充分利用,而且常常被忽略,那就是缺失数据。然而,缺失数据可以提供有关合并症的有价值的信息,以及监测患者的最佳实践,这可能挽救生命并减轻医疗体系的负担。我们描述了宾夕法尼亚大学医院系统从长期 COVID-19 患者中收集的实验室测量数据中的缺失数据模式,并重点研究了 2020 年至 2021 年间这些模式的变化。我们调查了这些模式与急性呼吸窘迫综合征 (ARDS) 等合并症以及 ARDS 患者 90 天死亡率之间的关联。这项工作展示了知识和经验如何改变临床医生和医院管理新型疾病的方式。它还可以为改善患者监测结果的最佳实践提供见解。

相似文献

3
Metabolic Syndrome and Acute Respiratory Distress Syndrome in Hospitalized Patients With COVID-19.
JAMA Netw Open. 2021 Dec 1;4(12):e2140568. doi: 10.1001/jamanetworkopen.2021.40568.
4
Compliance Phenotypes in Early Acute Respiratory Distress Syndrome before the COVID-19 Pandemic.
Am J Respir Crit Care Med. 2020 Nov 1;202(9):1244-1252. doi: 10.1164/rccm.202005-2046OC.
6
Intensive care for seriously ill patients affected by novel coronavirus sars - CoV - 2: Experience of the Crema Hospital, Italy.
Am J Emerg Med. 2021 Jul;45:156-161. doi: 10.1016/j.ajem.2020.08.005. Epub 2020 Aug 16.
9
An NLP tool for data extraction from electronic health records: COVID-19 mortalities and comorbidities.
Front Public Health. 2022 Dec 1;10:1070870. doi: 10.3389/fpubh.2022.1070870. eCollection 2022.

引用本文的文献

2
The 2024 Report on the Human Proteome from the HUPO Human Proteome Project.
J Proteome Res. 2024 Dec 6;23(12):5296-5311. doi: 10.1021/acs.jproteome.4c00776. Epub 2024 Nov 8.

本文引用的文献

1
Informative missingness: What can we learn from patterns in missing laboratory data in the electronic health record?
J Biomed Inform. 2023 Mar;139:104306. doi: 10.1016/j.jbi.2023.104306. Epub 2023 Feb 3.
2
Mining for equitable health: Assessing the impact of missing data in electronic health records.
J Biomed Inform. 2023 Mar;139:104269. doi: 10.1016/j.jbi.2022.104269. Epub 2023 Jan 5.
3
Trends in COVID-19 patient characteristics in a large electronic health record database in the United States: A cohort study.
PLoS One. 2022 Jul 20;17(7):e0271501. doi: 10.1371/journal.pone.0271501. eCollection 2022.
4
Potential therapeutic options for COVID-19: an update on current evidence.
Eur J Med Res. 2022 Jan 13;27(1):6. doi: 10.1186/s40001-021-00626-3.
5
On Missingness Features in Machine Learning Models for Critical Care: Observational Study.
JMIR Med Inform. 2021 Dec 8;9(12):e25022. doi: 10.2196/25022.
7
Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management.
Pneumonia (Nathan). 2021 Dec 6;13(1):14. doi: 10.1186/s41479-021-00092-9.
10
Pathophysiology of COVID-19-associated acute kidney injury.
Nat Rev Nephrol. 2021 Nov;17(11):751-764. doi: 10.1038/s41581-021-00452-0. Epub 2021 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验