Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
Department of Biomedical Informatics, Harvard Medical School, Boston, MA.
AMIA Annu Symp Proc. 2024 Jan 11;2023:942-950. eCollection 2023.
Electronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities and best practices for monitoring patients, which could save lives and reduce burden on the healthcare system. We characterize patterns of missing data in laboratory measurements collected at the University of Pennsylvania Hospital System from long-term COVID-19 patients and focus on the changes in these patterns between 2020 and 2021. We investigate how these patterns are associated with comorbidities such as acute respiratory distress syndrome (ARDS), and 90-day mortality in ARDS patients. This work displays how knowledge and experience can change the way clinicians and hospitals manage a novel disease. It can also provide insight into best practices when it comes to patient monitoring to improve outcomes.
电子健康记录 (EHR) 包含大量可用于进一步实现精准医疗的信息。EHR 中一个特别的数据元素不仅未得到充分利用,而且常常被忽略,那就是缺失数据。然而,缺失数据可以提供有关合并症的有价值的信息,以及监测患者的最佳实践,这可能挽救生命并减轻医疗体系的负担。我们描述了宾夕法尼亚大学医院系统从长期 COVID-19 患者中收集的实验室测量数据中的缺失数据模式,并重点研究了 2020 年至 2021 年间这些模式的变化。我们调查了这些模式与急性呼吸窘迫综合征 (ARDS) 等合并症以及 ARDS 患者 90 天死亡率之间的关联。这项工作展示了知识和经验如何改变临床医生和医院管理新型疾病的方式。它还可以为改善患者监测结果的最佳实践提供见解。