Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha (UCLM), Ciudad Real, Spain.
Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Castilla-La Mancha, Spain.
Brain Pathol. 2024 Jul;34(4):e13235. doi: 10.1111/bpa.13235. Epub 2024 Jan 22.
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder worldwide, is clinically characterized by cognitive deficits. Neuropathologically, AD brains accumulate deposits of amyloid-β (Aβ) and tau proteins. Furthermore, these misfolded proteins can propagate from cell to cell in a prion-like manner and induce native proteins to become pathological. The entorhinal cortex (EC) is among the earliest areas affected by tau accumulation along with volume reduction and neurodegeneration. Neuron-glia interactions have recently come into focus; however, the role of microglia and astroglia in the pathogenesis of AD remains unclear. Proteomic approaches allow the determination of changes in the proteome to better understand the pathology underlying AD. Bioinformatic analysis of proteomic data was performed to compare ECs from AD and non-AD human brain tissue. To validate the proteomic results, western blot, immunofluorescence, and confocal studies were carried out. The findings revealed that the most disturbed signaling pathway was synaptogenesis. Because of their involvement in synapse function, relationship with Aβ and tau proteins and interactions in the pathway analysis, three proteins were selected for in-depth study: HSP90AA1, PTK2B, and ANXA2. All these proteins showed colocalization with neurons and/or astroglia and microglia and with pathological Aβ and tau proteins. In particular, ANXA2, which is overexpressed in AD, colocalized with amoeboid microglial cells and Aβ plaques surrounded by astrocytes. Taken together, the evidence suggests that unbalanced expression of HSP90AA1, PTK2B, and ANXA2 may play a significant role in synaptic homeostasis and Aβ pathology through microglial and astroglial cells in the human EC in AD.
阿尔茨海默病(AD)是全球最常见的神经退行性疾病,临床上以认知功能障碍为特征。神经病理学上,AD 大脑中淀粉样β(Aβ)和tau 蛋白沉积。此外,这些错误折叠的蛋白质可以以类朊病毒的方式在细胞间传播,并诱导天然蛋白质发生病变。沿著体积减少和神经退行性变,内嗅皮层(EC)是最早受 tau 积累影响的区域之一。神经元-胶质细胞相互作用最近成为焦点;然而,小胶质细胞和星形胶质细胞在 AD 发病机制中的作用仍不清楚。蛋白质组学方法可以确定蛋白质组的变化,从而更好地了解 AD 的病理学。对 AD 和非 AD 人脑组织的 EC 进行了蛋白质组学数据的生物信息学分析。为了验证蛋白质组学结果,进行了 Western blot、免疫荧光和共聚焦研究。研究结果表明,最受干扰的信号通路是突触发生。由于它们参与突触功能、与 Aβ 和 tau 蛋白的关系以及通路分析中的相互作用,选择了三种蛋白质进行深入研究:HSP90AA1、PTK2B 和 ANXA2。所有这些蛋白质都与神经元和/或星形胶质细胞和小胶质细胞以及病理性 Aβ 和 tau 蛋白共定位。特别是,在 AD 中过度表达的 ANXA2 与阿米巴样小胶质细胞和被星形胶质细胞包围的 Aβ 斑块共定位。总之,这些证据表明,HSP90AA1、PTK2B 和 ANXA2 的表达失衡可能通过 AD 人类 EC 中的小胶质细胞和星形胶质细胞在突触稳态和 Aβ 病理学中发挥重要作用。