Bennett John M, Narwal Sunil K, Kabeche Stephanie, Abegg Daniel, Hackett Fiona, Yeo Tomas, Li Veronica L, Muir Ryan K, Faucher Franco F, Lovell Scott, Blackman Michael J, Adibekian Alexander, Yeh Ellen, Fidock David A, Bogyo Matthew
Department of Chemistry, Stanford University, Stanford, CA, USA.
Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
bioRxiv. 2024 Jan 11:2024.01.11.575224. doi: 10.1101/2024.01.11.575224.
Malaria, caused by remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.
由疟原虫引起的疟疾仍然是一个重大的健康负担。开发抗疟药物的一个障碍是寄生虫迅速产生耐药性的能力。我们证明了天然产物沙利尼泊汀A(SalA)通过抑制多种脂质代谢丝氨酸水解酶来杀死寄生虫,这是一种产生耐药性倾向较低的机制。鉴于将天然产物用作治疗剂存在困难,我们合成了一系列脂质混合烷基/芳基膦酸酯作为SalA的生物电子等排体。两种构造异构体表现出不同的抗寄生虫效力,这使得能够鉴定出与治疗相关的靶点。我们还证实,这种化合物通过一种不同于SalA和全脂肪酶抑制剂奥利司他的机制杀死寄生虫。与SalA一样,我们的化合物仅诱导微弱的耐药性,这归因于参与多药耐药的单一蛋白质中的突变。这些数据表明,混合烷基/芳基膦酸酯是一种有前途的、易于合成的抗疟药物,产生耐药性的倾向较低。