Suppr超能文献

针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶(M)的人工智能驱动的共价药物设计策略:结构见解与分子机制

AI-driven covalent drug design strategies targeting main protease (m) against SARS-CoV-2: structural insights and molecular mechanisms.

作者信息

Haghir Ebrahim Abadi Mohammad Hossein, Ghasemlou Abdulrahman, Bayani Fatemeh, Sefidbakht Yahya, Vosough Massoud, Mozaffari-Jovin Sina, Uversky Vladimir N

机构信息

Protein Research Center, Shahid Beheshti University, Tehran, Iran.

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

出版信息

J Biomol Struct Dyn. 2024 Jan 29:1-29. doi: 10.1080/07391102.2024.2308769.

Abstract

The emergence of new SARS-CoV-2 variants has raised concerns about the effectiveness of COVID-19 vaccines. To address this challenge, small-molecule antivirals have been proposed as a crucial therapeutic option. Among potential targets for anti-COVID-19 therapy, the main protease (M) of SARS-CoV-2 is important due to its essential role in the virus's life cycle and high conservation. The substrate-binding region of the core proteases of various coronaviruses, including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), could be used for the generation of new protease inhibitors. Various drug discovery methods have employed a diverse range of strategies, targeting both monomeric and dimeric forms, including drug repurposing, integrating virtual screening with high-throughput screening (HTS), and structure-based drug design, each demonstrating varying levels of efficiency. Covalent inhibitors, such as Nirmatrelvir and MG-101, showcase robust and high-affinity binding to Mpro, exhibiting stable interactions confirmed by molecular docking studies. Development of effective antiviral drugs is imperative to address potential pandemic situations. This review explores recent advances in the search for M inhibitors and the application of artificial intelligence (AI) in drug design. AI leverages vast datasets and advanced algorithms to streamline the design and identification of promising M inhibitors. AI-driven drug discovery methods, including molecular docking, predictive modeling, and structure-based drug repurposing, are at the forefront of identifying potential candidates for effective antiviral therapy. In a time when COVID-19 potentially threat global health, the quest for potent antiviral solutions targeting M could be critical for inhibiting the virus.

摘要

新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体的出现引发了人们对新型冠状病毒肺炎(COVID-19)疫苗有效性的担忧。为应对这一挑战,小分子抗病毒药物已被提议作为一种关键的治疗选择。在抗COVID-19治疗的潜在靶点中,SARS-CoV-2的主要蛋白酶(M)因其在病毒生命周期中的重要作用和高度保守性而显得尤为重要。包括SARS-CoV-2、SARS-CoV和中东呼吸综合征冠状病毒(MERS-CoV)在内的各种冠状病毒核心蛋白酶的底物结合区域,可用于开发新的蛋白酶抑制剂。各种药物发现方法采用了多种策略,针对单体和二聚体形式,包括药物重新利用、将虚拟筛选与高通量筛选(HTS)相结合以及基于结构的药物设计,每种方法的效率各不相同。共价抑制剂,如奈玛特韦和MG-101,对M蛋白酶表现出强大且高亲和力的结合,分子对接研究证实了它们之间的稳定相互作用。开发有效的抗病毒药物对于应对潜在的大流行情况至关重要。本综述探讨了在寻找M蛋白酶抑制剂方面的最新进展以及人工智能(AI)在药物设计中的应用。人工智能利用大量数据集和先进算法来简化有前景的M蛋白酶抑制剂的设计和识别。人工智能驱动的药物发现方法,包括分子对接、预测建模和基于结构的药物重新利用,处于识别有效抗病毒治疗潜在候选药物的前沿。在COVID-19可能威胁全球健康的时期,寻找针对M蛋白酶的有效抗病毒解决方案对于抑制病毒可能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验