Suppr超能文献

双层光谱探测器CT:一种用于预测胰腺导管腺癌组织病理学分化的无创术前工具。

Dual-layer spectral detector CT: A noninvasive preoperative tool for predicting histopathological differentiation in pancreatic ductal adenocarcinoma.

作者信息

Liu Wei, Xie Tiansong, Chen Lei, Tang Wei, Zhang Zehua, Wang Yu, Deng Weiwei, Xie Xuebin, Zhou Zhengrong

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai 201100, China.

出版信息

Eur J Radiol. 2024 Apr;173:111327. doi: 10.1016/j.ejrad.2024.111327. Epub 2024 Jan 24.

Abstract

PURPOSE

To predict histopathological differentiation grades in patients with pancreatic ductal adenocarcinoma (PDAC) before surgery with quantitative and qualitative variables obtained from dual-layer spectral detector CT (DLCT).

METHODS

Totally 128 patients with histopathologically confirmed PDAC and preoperative DLCT were retrospectively enrolled and categorized into the low-grade (LG) (well and moderately differentiated, n = 82) and high-grade (HG) (poorly differentiated, n = 46) subgroups. Both conventional and spectral variables for PDAC were measured. The ratio of iodine concentration (IC) values in arterial phase(AP) and venous phase (VP) was defined as iodine enhancement fraction_AP/VP (IEF_AP/VP). Necrosis was visually assessed on both conventional CT images (necrosis_con) and virtual mono-energetic images (VMIs) at 40 keV (necrosis_40keV). Forward stepwise logistic regression method was conducted to perform univariable and multivariable analysis. Receiver operating characteristic (ROC) curves and the DeLong method were used to evaluate and compare the efficiencies of variables in predicting tumor grade.

RESULTS

Necrosis_con (odds ratio [OR] = 2.84, 95% confidence interval [CI]: 1.13-7.13; p < 0.001) was an independent predictor among conventional variables, and necrosis_40keV (OR = 5.82, 95% CI: 1.98-17.11; p = 0.001) and IEF_AP/VP (OR = 1.12, 95% CI:1.07-1.17; p < 0.001) were independent predictors among spectral variables for distinguishing LG PDAC from HG PDAC. IEF_AP/VP (AUC = 0.754, p = 0.016) and combination model (AUC = 0.812, p < 0.001) had better predictive performances than necrosis_con (AUC = 0.580). The combination model yielded the highest sensitivity (72%) and accuracy (79%), while IEF_AP/VP exhibited the highest specificity (89%).

CONCLUSION

Variables derived from DLCT have the potential to preoperatively evaluate PDAC tumor grade. Furthermore, spectral variables and their combination exhibited superior predictive performances than conventional CT variables.

摘要

目的

利用双层光谱探测器CT(DLCT)获得的定量和定性变量,预测胰腺导管腺癌(PDAC)患者术前的组织病理学分化程度。

方法

回顾性纳入128例经组织病理学确诊的PDAC患者及术前DLCT检查资料,将其分为低级别(LG)(高分化和中分化,n = 82)和高级别(HG)(低分化,n = 46)亚组。测量PDAC的常规及光谱变量。将动脉期(AP)和静脉期(VP)碘浓度(IC)值的比值定义为碘强化分数_AP/VP(IEF_AP/VP)。在常规CT图像(坏死_con)和40keV的虚拟单能量图像(VMI)(坏死_40keV)上对坏死情况进行视觉评估。采用向前逐步逻辑回归方法进行单变量和多变量分析。利用受试者工作特征(ROC)曲线和DeLong方法评估和比较各变量预测肿瘤分级的效能。

结果

在常规变量中,坏死_con(比值比[OR]=2.84,95%置信区间[CI]:1.13 - 7.13;p<0.001)是独立预测因子;在光谱变量中,坏死_40keV(OR = 5.82,95%CI:1.98 - 17.11;p = 0.001)和IEF_AP/VP(OR = 1.12,95%CI:1.07 - 1.17;p<0.001)是区分LG PDAC和HG PDAC的独立预测因子。IEF_AP/VP(曲线下面积[AUC]=0.754,p = 0.016)和联合模型(AUC = 0.812,p<0.001)的预测性能优于坏死_con(AUC = 0.580)。联合模型的敏感性(72%)和准确性(79%)最高,而IEF_AP/VP的特异性(89%)最高。

结论

DLCT衍生的变量有潜力术前评估PDAC肿瘤分级。此外,光谱变量及其联合模型的预测性能优于传统CT变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验