Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark; Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
In Vitro Biology, Molecular Biomedicine, Research and early development, LEO Pharma A/S, 2750 Ballerup, Denmark.
Eur J Pharm Biopharm. 2024 Apr;197:114219. doi: 10.1016/j.ejpb.2024.114219. Epub 2024 Feb 17.
Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI ∼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.
基于核酸的治疗药物被包裹在脂质纳米颗粒(LNPs)中,有可能成为治疗遗传性皮肤疾病的根本方法。尽管纳米颗粒被认为对皮肤是不可渗透的,但研究和临床研究表明,当局部给予时,纳米颗粒可以穿透具有降低的皮肤屏障功能的皮肤。研究表明,表皮角质形成细胞表达低密度脂蛋白受体(LDLR),该受体介导载脂蛋白 E(apoE)相关纳米颗粒的内吞作用,而真皮成纤维细胞表达甘露糖受体。在这里,我们制备了旨在利用这些不同的内吞途径将细胞内 mRNA 递送到两种最丰富的皮肤细胞类型的 LNPs,包含:(i)不稳定的聚乙二醇脂质(DMG-PEG2000),易于解离并促进 apoE 与 LNPs 结合,使 apoE-LDLR 介导的角质形成细胞摄取,(ii)稳定的聚乙二醇脂质(DSPE-PEG2000),赋予 LNPs 隐身样特性,以实现对远隔细胞的靶向,和(iii)甘露糖偶联的聚乙二醇脂质(DSPE-PEG2000-Mannose),以靶向含有甘露糖受体的成纤维细胞或潜在的免疫细胞。所有类型的 LNPs 均通过涡旋混合制备,并形成单分散(PDI∼0.1)的 LNP 样品,粒径为 130nm(±25%),mRNA 包封效率高(≥90%)。含有不稳定 PEG 脂质的 LNPs 对角质形成细胞和成纤维细胞的转染效力最高,添加 apoE 通过 LDLR 极大地增强了转染。LNPs 用甘露糖包被不能提高转染效率,隐身样 LNPs 显示有限或没有转染。总之,我们的研究表明,在探索 LNPs 用于皮肤递送时,使用不稳定的 PEG 脂质和共同给予 apoE。