Suppr超能文献

一种抗 CRISPR 蛋白,既能抑制自身转录,又能阻止 Cas9 靶向 DNA 结合。

An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding.

机构信息

Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2024 Feb 28;15(1):1806. doi: 10.1038/s41467-024-45987-5.

Abstract

AcrIIA15 is an anti-CRISPR (Acr) protein that inhibits Staphylococcus aureus Cas9 (SaCas9). Although previous studies suggested it has dual functions, the structural and biochemical basis for its two activities remains unclear. Here, we determined the cryo-EM structure of AcrIIA15 in complex with SaCas9-sgRNA to reveal the inhibitory mechanism of the Acr's C-terminal domain (CTD) in mimicking dsDNA to block protospacer adjacent motif (PAM) recognition. For the N-terminal domain (NTD), our crystal structures of the AcrIIA15-promoter DNA show that AcrIIA15 dimerizes through its NTD to recognize double-stranded (ds) DNA. Further, AcrIIA15 can simultaneously bind to both SaCas9-sgRNA and promoter DNA, creating a supercomplex of two Cas9s bound to two CTDs converging on a dimer of the NTD bound to a dsDNA. These findings shed light on AcrIIA15's inhibitory mechanisms and its autoregulation of transcription, enhancing our understanding of phage-host interactions and CRISPR defense.

摘要

AcrIIA15 是一种抗 CRISPR(Acr)蛋白,可抑制金黄色葡萄球菌 Cas9(SaCas9)。尽管先前的研究表明它具有双重功能,但它的两种活性的结构和生化基础仍不清楚。在这里,我们通过确定 AcrIIA15 与 SaCas9-sgRNA 复合物的低温电镜结构,揭示了 Acr 的 C 末端结构域(CTD)模拟 dsDNA 以阻断原间隔基序(PAM)识别的抑制机制。对于 N 末端结构域(NTD),我们的 AcrIIA15-启动子 DNA 的晶体结构表明,AcrIIA15 通过其 NTD 二聚化来识别双链(ds)DNA。此外,AcrIIA15 可以同时与 SaCas9-sgRNA 和启动子 DNA 结合,形成两个 Cas9 与两个 CTD 结合到与 dsDNA 结合的 NTD 二聚体的超复合物。这些发现揭示了 AcrIIA15 的抑制机制及其对转录的自调控,增强了我们对噬菌体-宿主相互作用和 CRISPR 防御的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8893/10901769/29a7b3e36959/41467_2024_45987_Fig1_HTML.jpg

相似文献

1
An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding.
Nat Commun. 2024 Feb 28;15(1):1806. doi: 10.1038/s41467-024-45987-5.
2
Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
Mol Cell. 2019 Feb 7;73(3):611-620.e3. doi: 10.1016/j.molcel.2018.11.011. Epub 2018 Dec 31.
3
Crystal Structure of Staphylococcus aureus Cas9.
Cell. 2015 Aug 27;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
4
Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation.
EMBO Rep. 2020 Oct 5;21(10):e50184. doi: 10.15252/embr.202050184. Epub 2020 Aug 13.
5
AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2303675120. doi: 10.1073/pnas.2303675120. Epub 2023 Jul 26.
6
Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32.
Sci China Life Sci. 2024 Sep;67(9):1781-1791. doi: 10.1007/s11427-024-2607-8. Epub 2024 Jun 4.
7
Potent CRISPR-Cas9 inhibitors from genomes.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6531-6539. doi: 10.1073/pnas.1917668117. Epub 2020 Mar 10.
8
Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
J Biol Chem. 2020 May 8;295(19):6509-6517. doi: 10.1074/jbc.RA119.012239. Epub 2020 Apr 1.
9
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.
10
Dynamics of Target DNA Binding and Cleavage by Cas9 as Revealed by High-Speed Atomic Force Microscopy.
ACS Nano. 2023 Mar 14;17(5):4629-4641. doi: 10.1021/acsnano.2c10709. Epub 2023 Feb 27.

引用本文的文献

1
Recent applications, future perspectives, and limitations of the CRISPR-Cas system.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102634. doi: 10.1016/j.omtn.2025.102634. eCollection 2025 Sep 9.

本文引用的文献

1
AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2303675120. doi: 10.1073/pnas.2303675120. Epub 2023 Jul 26.
2
Anti-CRISPR AcrIIC5 is a dsDNA mimic that inhibits type II-C Cas9 effectors by blocking PAM recognition.
Nucleic Acids Res. 2023 Feb 28;51(4):1984-1995. doi: 10.1093/nar/gkad052.
3
Anti-CRISPR Protein AcrIIC5 Inhibits CRISPR-Cas9 by Occupying the Target DNA Binding Pocket.
J Mol Biol. 2023 Apr 1;435(7):167991. doi: 10.1016/j.jmb.2023.167991. Epub 2023 Feb 2.
4
Molecular basis of dual anti-CRISPR and auto-regulatory functions of AcrIF24.
Nucleic Acids Res. 2022 Oct 28;50(19):11344-11358. doi: 10.1093/nar/gkac880.
5
Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor.
Nat Chem Biol. 2022 Dec;18(12):1417-1424. doi: 10.1038/s41589-022-01137-w. Epub 2022 Sep 26.
7
Structural basis of Staphylococcus aureus Cas9 inhibition by AcrIIA14.
Nucleic Acids Res. 2021 Jun 21;49(11):6587-6595. doi: 10.1093/nar/gkab487.
8
Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression.
Annu Rev Microbiol. 2020 Sep 8;74:21-37. doi: 10.1146/annurev-micro-020518-120107. Epub 2020 Jun 5.
9
Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.
Cell Host Microbe. 2020 Jul 8;28(1):23-30.e5. doi: 10.1016/j.chom.2020.04.002. Epub 2020 Apr 22.
10
Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes.
Cell Host Microbe. 2020 Jul 8;28(1):31-40.e9. doi: 10.1016/j.chom.2020.04.001. Epub 2020 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验