Suppr超能文献

SAW:一种用于Stereo-seq空间转录组学的高效且准确的数据分析工作流程。

SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics.

作者信息

Gong Chun, Li Shengkang, Wang Leying, Zhao Fuxiang, Fang Shuangsang, Yuan Dong, Zhao Zijian, He Qiqi, Li Mei, Liu Weiqing, Li Zhaoxun, Xie Hongqing, Liao Sha, Chen Ao, Zhang Yong, Li Yuxiang, Xu Xun

机构信息

BGI-Shenzhen, Shenzhen, Guangdong, China.

BGI-Beijing, Beijing, 102601, China.

出版信息

GigaByte. 2024 Feb 20;2024:gigabyte111. doi: 10.46471/gigabyte.111. eCollection 2024.

Abstract

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.

摘要

空间转录组学的基本分析步骤需要从空间和细胞中获取基因表达信息。现有的用于这些分析的工具在处理大型数据集时会出现性能问题。这些问题包括计算密集型的空间定位、RNA基因组比对以及在大芯片场景下过多的内存使用。这些问题影响了分析的适用性和效率。在此,针对华大基因开发的Stereo-seq技术,开发了一种高性能且准确的空间转录组学数据分析工作流程,称为Stereo-seq分析工作流程(SAW)。SAW包括mRNA空间位置重建、基因组比对、基因表达矩阵生成和聚类。该工作流程以通用格式输出文件,以便后续进行个性化分析。对于1GB读取量的1×1cm芯片测试数据,整个分析的执行时间约为148分钟,比未优化的工作流程快1.8倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b830/10905255/9e94f813b3d0/gigabyte-2024-111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验