Department of Medicine, Division of Nephrology (P.A.W., L.A.-Q., P.R.G.), Johns Hopkins University School of Medicine, Baltimore, MD.
Department of Physiology (P.A.W.), Johns Hopkins University School of Medicine, Baltimore, MD.
Hypertension. 2024 May;81(5):1044-1054. doi: 10.1161/HYPERTENSIONAHA.123.22546. Epub 2024 Mar 11.
Potassium (K)-deficient diets, typical of modern processed foods, increase blood pressure (BP) and NaCl sensitivity. A K-dependent signaling pathway in the kidney distal convoluted tubule, coined the K switch, that couples extracellular K sensing to activation of the thiazide-sensitive NaCl cotransporter (NCC) and NaCl retention has been implicated, but causality has not been established.
To test the hypothesis that small, physiological changes in plasma K (P) are translated to BP through the switch pathway, a genetic approach was used to activate the downstream switch kinase, SPAK (SPS1-related proline/alanine-rich kinase), within the distal convoluted tubule. The CA-SPAK (constitutively active SPS1-related proline/alanine-rich kinase mice) were compared with control mice over a 4-day P titration (3.8-5.1 mmol) induced by changes in dietary K. Arterial BP was monitored using radiotelemetry, and renal function measurements, NCC abundance, phosphorylation, and activity were made.
As P decreased in control mice, BP progressively increased and became sensitive to dietary NaCl and hydrochlorothiazide, coincident with increased NCC phosphorylation and urinary sodium retention. By contrast, BP in CA-SPAK mice was elevated, resistant to the P titration, and sensitive to hydrochlorothiazide and salt at all P levels, concomitant with sustained and elevated urinary sodium retention and NCC phosphorylation and activity. Thus, genetically locking the switch on drives NaCl sensitivity and prevents the response of BP to potassium.
Low K, common in modern ultraprocessed diets, presses the K-switch pathway to turn on NCC activity, increasing sodium retention, BP, and salt sensitivity.
现代加工食品中典型的低钾(K)饮食会升高血压(BP)并增加对 NaCl 的敏感性。在肾脏远曲小管中存在一种 K 依赖性信号通路,被称为 K 开关,它将细胞外 K 感应与噻嗪类敏感的 NaCl 协同转运体(NCC)的激活偶联起来,从而导致 NaCl 潴留,这一假说已得到证实,但因果关系尚未确立。
为了检验如下假说,即血浆 K(P)的微小生理变化可通过该开关通路转化为 BP,我们采用基因敲入的方法在远曲小管中激活下游的开关激酶 SPAK(SPS1 相关脯氨酸/丙氨酸丰富激酶)。通过改变饮食 K 来实现 4 天的 P 滴定(3.8-5.1mmol),比较 CA-SPAK(组成型激活 SPS1 相关脯氨酸/丙氨酸丰富激酶小鼠)与对照小鼠。采用放射性遥测术监测动脉 BP,测量肾功能、NCC 丰度、磷酸化和活性。
在对照小鼠中,随着 P 的降低,BP 逐渐升高,并对膳食 NaCl 和氢氯噻嗪变得敏感,同时 NCC 磷酸化和尿钠潴留增加。相比之下,CA-SPAK 小鼠的 BP 升高,对 P 滴定不敏感,且对所有 P 水平的氢氯噻嗪和盐均敏感,同时持续和升高的尿钠潴留以及 NCC 磷酸化和活性。因此,通过基因敲入锁定开关会导致 NaCl 敏感性,并防止 BP 对 K 的反应。
现代超加工饮食中常见的低钾会按压 K 开关通路以激活 NCC 活性,增加钠潴留、BP 和盐敏感性。