Department of Chemistry, College of Staten Island, City University of New York, New York, United States.
Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, United States.
Protein Sci. 2024 Apr;33(4):e4955. doi: 10.1002/pro.4955.
Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen ( N) relaxation rates (R , R , and N-{ H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.
S100 蛋白的结构和功能受两个独特的钙结合 EF 手基序调节。在这项工作中,我们使用溶液态 NMR 光谱学来研究两个钙结合位点之间的协同作用,并绘制靶结合位点的变构变化图。为了解析单个钙结合事件的贡献,设计了 S100A12 的变体,分别选择性地将钙结合到 EF-I(N63A)或 EF-II(E31A)环。对野生型蛋白及其突变体的骨架化学位移的详细分析表明,钙结合到典型的 EF-II 环是蛋白“关闭”apo 到“打开”Ca 结合构象之间构象转换的主要触发因素。S100 特异性 EF-I 环中的结合消除对 EF-II 环的钙结合亲和力和伴随的结构重排的影响有限。相比之下,EF-II 环中的结合消除显著降低了 EF-I 环中的钙亲和力,并且结构采用“关闭”apo 样构象。酰胺氮(N)弛豫率(R 1、R 2 和 N-{H}NOE)和分子动力学(MD)模拟的实验分析表明,钙结合态相对柔软,在功能相关的结构域中诱导皮秒纳秒的运动,这些结构域负责靶识别,如铰链域和 C 末端残基。实验弛豫研究与 MD 模拟相结合表明,虽然 EF-I 环中的钙结合本身不会诱导多肽链中的显著运动,但 EF-I 在 EF-II 环中结合钙的情况下调节多肽链的波动。这些结果为钙结合对靶识别的动态调节提供了新的见解,并揭示了 S100A12 中两个钙结合事件之间协同作用的作用。