Suppr超能文献

钙介导的 S100A12 静态和动态变构作用:对 S100 蛋白识别靶标的影响。

Calcium mediated static and dynamic allostery in S100A12: Implications for target recognition by S100 proteins.

机构信息

Department of Chemistry, College of Staten Island, City University of New York, New York, United States.

Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, United States.

出版信息

Protein Sci. 2024 Apr;33(4):e4955. doi: 10.1002/pro.4955.

Abstract

Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen ( N) relaxation rates (R , R , and N-{ H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.

摘要

S100 蛋白的结构和功能受两个独特的钙结合 EF 手基序调节。在这项工作中,我们使用溶液态 NMR 光谱学来研究两个钙结合位点之间的协同作用,并绘制靶结合位点的变构变化图。为了解析单个钙结合事件的贡献,设计了 S100A12 的变体,分别选择性地将钙结合到 EF-I(N63A)或 EF-II(E31A)环。对野生型蛋白及其突变体的骨架化学位移的详细分析表明,钙结合到典型的 EF-II 环是蛋白“关闭”apo 到“打开”Ca 结合构象之间构象转换的主要触发因素。S100 特异性 EF-I 环中的结合消除对 EF-II 环的钙结合亲和力和伴随的结构重排的影响有限。相比之下,EF-II 环中的结合消除显著降低了 EF-I 环中的钙亲和力,并且结构采用“关闭”apo 样构象。酰胺氮(N)弛豫率(R 1、R 2 和 N-{H}NOE)和分子动力学(MD)模拟的实验分析表明,钙结合态相对柔软,在功能相关的结构域中诱导皮秒纳秒的运动,这些结构域负责靶识别,如铰链域和 C 末端残基。实验弛豫研究与 MD 模拟相结合表明,虽然 EF-I 环中的钙结合本身不会诱导多肽链中的显著运动,但 EF-I 在 EF-II 环中结合钙的情况下调节多肽链的波动。这些结果为钙结合对靶识别的动态调节提供了新的见解,并揭示了 S100A12 中两个钙结合事件之间协同作用的作用。

相似文献

3
Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation.
Biochemistry. 2001 Mar 27;40(12):3439-48. doi: 10.1021/bi0027478.
4
Relating form and function of EF-hand calcium binding proteins.
Acc Chem Res. 2011 Mar 15;44(3):171-9. doi: 10.1021/ar100110d. Epub 2011 Feb 11.
5
Ca(II) and Zn(II) Cooperate To Modulate the Structure and Self-Assembly of S100A12.
Biochemistry. 2019 Apr 30;58(17):2269-2281. doi: 10.1021/acs.biochem.9b00123. Epub 2019 Apr 18.
6
Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
Biochemistry. 1996 Sep 10;35(36):11577-88. doi: 10.1021/bi9612226.
7
Solution structure and dynamics of S100A5 in the apo and Ca2+-bound states.
J Biol Inorg Chem. 2009 Sep;14(7):1097-107. doi: 10.1007/s00775-009-0553-1. Epub 2009 Jun 18.
8
The three-dimensional structure of human S100A12.
Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):20-9. doi: 10.1107/s090744490001458x.

本文引用的文献

1
Dynamic regulation of Zn(II) sequestration by calgranulin C.
Protein Sci. 2022 Sep;31(9):e4403. doi: 10.1002/pro.4403.
2
Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery.
J Mol Biol. 2022 Dec 15;434(23):167872. doi: 10.1016/j.jmb.2022.167872. Epub 2022 Oct 28.
3
Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes.
Front Mol Biosci. 2021 Oct 11;8:749052. doi: 10.3389/fmolb.2021.749052. eCollection 2021.
4
Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins.
J Phys Chem B. 2021 Jun 24;125(24):6390-6405. doi: 10.1021/acs.jpcb.1c01269. Epub 2021 Jun 11.
5
Were Ancestral Proteins Less Specific?
Mol Biol Evol. 2021 May 19;38(6):2227-2239. doi: 10.1093/molbev/msab019.
6
Calcium Regulates S100A12 Zinc Sequestration by Limiting Structural Variations.
Chembiochem. 2020 May 4;21(9):1372-1382. doi: 10.1002/cbic.201900623. Epub 2020 Jan 20.
7
Ca(II) and Zn(II) Cooperate To Modulate the Structure and Self-Assembly of S100A12.
Biochemistry. 2019 Apr 30;58(17):2269-2281. doi: 10.1021/acs.biochem.9b00123. Epub 2019 Apr 18.
8
Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.
PLoS Comput Biol. 2018 Apr 3;14(4):e1006072. doi: 10.1371/journal.pcbi.1006072. eCollection 2018 Apr.
9
Bioinorganic Explorations of Zn(II) Sequestration by Human S100 Host-Defense Proteins.
Biochemistry. 2018 Mar 20;57(11):1673-1680. doi: 10.1021/acs.biochem.7b01305. Epub 2018 Mar 6.
10
Opposing Intermolecular Tuning of Ca Affinity for Calmodulin by Neurogranin and CaMKII Peptides.
Biophys J. 2017 Mar 28;112(6):1105-1119. doi: 10.1016/j.bpj.2017.01.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验