Suppr超能文献

揭示银纳米颗粒与细菌之间的相互作用。

Bringing the interaction of silver nanoparticles with bacteria to light.

作者信息

Normani Simone, Dalla Vedova Nicholas, Lanzani Guglielmo, Scotognella Francesco, Paternò Giuseppe Maria

机构信息

Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy.

Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy.

出版信息

Biophys Rev (Melville). 2021 Jun 22;2(2):021304. doi: 10.1063/5.0048725. eCollection 2021 Jun.

Abstract

In past decades, the exploitation of silver nanoparticles in novel antibacterial and detection devices has risen to prominence, owing to the well-known specific interaction of silver with bacteria. The vast majority of the investigations focus on the investigation over the mechanism of action underpinning bacterial eradication, while few efforts have been devoted to the study of the modification of silver optical properties upon interaction with bacteria. Specifically, given the characteristic localized surface plasmon resonance of silver nanostructures, which is sensitive to changes in the charge carrier density or in the dielectric environment, these systems can offer a handle in the detection of bacteria pathogens. In this review, we present the state of art of the research activity on the interaction of silver nanoparticles with bacteria, with strong emphasis on the modification of their optical properties. This may indeed lead to easy color reading of bacterial tests and pave the way to the development of nanotechnologic silver-based bacterial detection systems and drug-screening platforms.

摘要

在过去几十年中,由于银与细菌之间众所周知的特异性相互作用,银纳米颗粒在新型抗菌和检测设备中的应用日益突出。绝大多数研究集中在对细菌根除作用机制的研究上,而很少有人致力于研究银与细菌相互作用时光学性质的改变。具体而言,鉴于银纳米结构具有对电荷载流子密度或介电环境变化敏感的特征性局域表面等离子体共振,这些系统可为细菌病原体的检测提供一种手段。在本综述中,我们介绍了银纳米颗粒与细菌相互作用的研究现状,重点强调了其光学性质的改变。这确实可能使细菌检测易于通过颜色读取,并为基于银的纳米技术细菌检测系统和药物筛选平台的开发铺平道路。

相似文献

1
Bringing the interaction of silver nanoparticles with bacteria to light.
Biophys Rev (Melville). 2021 Jun 22;2(2):021304. doi: 10.1063/5.0048725. eCollection 2021 Jun.
2
Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:434-40. doi: 10.1016/j.saa.2014.11.074. Epub 2014 Nov 28.
3
Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.
Biosens Bioelectron. 2018 Oct 15;117:32-39. doi: 10.1016/j.bios.2018.05.062. Epub 2018 Jun 1.
4
Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria.
Anal Chim Acta. 2013 Mar 5;766:83-7. doi: 10.1016/j.aca.2012.12.015. Epub 2013 Jan 7.
7
Nano-Ag: Environmental applications and perspectives.
Sci Total Environ. 2022 Jul 10;829:154644. doi: 10.1016/j.scitotenv.2022.154644. Epub 2022 Mar 17.
8
Detection of heavy metals, SERS and antibacterial activity of polyvinylpyrolidone modified plasmonic nanoparticles.
Environ Res. 2022 Jul;210:112883. doi: 10.1016/j.envres.2022.112883. Epub 2022 Feb 3.
10
Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water.
Beilstein J Nanotechnol. 2016 Nov 9;7:1654-1661. doi: 10.3762/bjnano.7.157. eCollection 2016.

引用本文的文献

1
Rapid Green Synthesis of Silver Nanoparticles by Reishi and Their Antibacterial Activity and Mechanisms.
J Biomater Nanobiotechnol. 2024 Jul;15(3):51-63. doi: 10.4236/jbnb.2024.153004. Epub 2024 Jul 12.
2
Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):27750-27758. doi: 10.1021/acsami.3c05473. Epub 2023 Jun 1.

本文引用的文献

1
Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.
Nanotechnology. 2007 May 4;18(22). doi: 10.1088/0957-4484/18/22/225103.
3
Hybrid One-Dimensional Plasmonic-Photonic Crystals for Optical Detection of Bacterial Contaminants.
J Phys Chem Lett. 2019 Sep 5;10(17):4980-4986. doi: 10.1021/acs.jpclett.9b01612. Epub 2019 Aug 15.
5
Solution processable and optically switchable 1D photonic structures.
Sci Rep. 2018 Feb 23;8(1):3517. doi: 10.1038/s41598-018-21824-w.
6
Bacterial resistance to silver nanoparticles and how to overcome it.
Nat Nanotechnol. 2018 Jan;13(1):65-71. doi: 10.1038/s41565-017-0013-y. Epub 2017 Dec 4.
7
The antimicrobial activity of nanoparticles: present situation and prospects for the future.
Int J Nanomedicine. 2017 Feb 14;12:1227-1249. doi: 10.2147/IJN.S121956. eCollection 2017.
8
Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against .
Nanotechnol Sci Appl. 2016 Dec 20;10:1-9. doi: 10.2147/NSA.S123681. eCollection 2017.
9
Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.
Beilstein J Nanotechnol. 2016 Oct 6;7:1404-1410. doi: 10.3762/bjnano.7.131. eCollection 2016.
10
Unraveling the Interaction of Silver Nanoparticles with Mammalian and Bacterial DNA.
J Phys Chem B. 2016 Jun 23;120(24):5313-24. doi: 10.1021/acs.jpcb.6b01586. Epub 2016 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验