Suppr超能文献

催化和抑制 IIb 类组蛋白去乙酰化酶中的化学多功能性。

Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases.

机构信息

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.

出版信息

Acc Chem Res. 2024 Apr 16;57(8):1135-1148. doi: 10.1021/acs.accounts.3c00801. Epub 2024 Mar 26.

Abstract

The zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/β fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for -acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.

摘要

锌依赖的组蛋白去乙酰化酶(HDACs1-11)属于精氨酸脱氨酶-去乙酰化酶超家族蛋白,该家族成员具有共同的α/β折叠和催化金属结合位点。虽然一些 HDACs 通过催化组蛋白中赖氨酸乙酰化水解来发挥表观遗传调控作用,但 HDACs 的生物学活性远不止于组蛋白。HDACs 还可在核内和细胞质中去乙酰化非组蛋白,以调节众多细胞过程。由于某些 HDAC 可以水解其他共价修饰,因此底物池更加多样化。例如,HDAC6 也是赖氨酸脱羧酶,而 HDAC11 是赖氨酸脂肪酸脱酰酶。令人惊讶的是,HDAC10 不是赖氨酸去乙酰化酶,而是多胺去乙酰化酶。因此,HDAC 作为生物和化学多功能催化剂,可调节细胞内各种蛋白和非蛋白底物的功能。由于其关键的调节功能,HDAC 成为药物设计的重要靶点。目前,有 4 种 HDAC 抑制剂被 FDA 批准用于癌症化疗。然而,这些抑制剂对多种 HDAC 同工酶均具有活性,缺乏选择性被认为是导致不良副作用的原因。目前的药物化学研究主要集中在开发同工酶选择性抑制剂上,许多此类研究主要集中在 HDAC6 和 HDAC10 上。由于其在细胞中的作用是作为微管蛋白脱乙酰酶和 tau 脱乙酰酶,HDAC6 成为治疗干预的靶点,选择性抑制剂正在癌症化疗和周围神经病变的治疗中进行研究。酶-抑制剂复合物的晶体结构揭示了抑制剂设计的各种特征,如锌配位基团、分叉帽基团和芳香氟化模式,如何有助于亲和力和同工酶选择性。多胺去乙酰化酶 HDAC10 也是癌症化疗的新兴靶点。在我们实验室中,通过捕获在 HDAC10 活性部位的完整底物的晶体结构,揭示了 -乙酰基 spermidine 水解的惊人狭窄的底物特异性的分子基础。已经成功地利用负责底物特异性的活性部位特征来设计强效和选择性抑制剂。在本综述中,我回顾了 HDAC 的结构化学和抑制作用,重点介绍了我实验室最近在 HDAC6 和 HDAC10 的 X 射线晶体学和功能研究。这些研究提供了令人着迷的催化快照,以及涉及结合抑制剂的新型化学转化。HDAC 活性部位的锌结合水分子是去乙酰化反应中的催化亲核试剂,但该激活水分子也可以与抑制剂的 C═O 或 C═N 基团反应,生成异常紧密结合的意想不到的反应产物。多功能的活性部位化学释放了这些化合物的全部抑制潜力,X 射线晶体学使我们能够观察到这种化学作用。

相似文献

1
Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases.
Acc Chem Res. 2024 Apr 16;57(8):1135-1148. doi: 10.1021/acs.accounts.3c00801. Epub 2024 Mar 26.
2
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
Histone deacetylase-10 liberates spermidine to support polyamine homeostasis and tumor cell growth.
J Biol Chem. 2022 Oct;298(10):102407. doi: 10.1016/j.jbc.2022.102407. Epub 2022 Aug 19.
6
Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition.
Exp Cell Res. 2022 Jul 1;416(1):113160. doi: 10.1016/j.yexcr.2022.113160. Epub 2022 Apr 18.
7
Epigenetic therapy meets targeted protein degradation: HDAC-PROTACs in cancer treatment.
Future Med Chem. 2025 Jul 16:1-13. doi: 10.1080/17568919.2025.2533113.

引用本文的文献

1
The deacetylases HDAC1/HDAC2 control JAK2-STAT signaling through the ubiquitin ligase SIAH2.
Signal Transduct Target Ther. 2025 Aug 29;10(1):275. doi: 10.1038/s41392-025-02369-7.
2
Class IIa HDACs Are Important Signal Transducers with Unclear Enzymatic Activities.
Biomolecules. 2025 Jul 22;15(8):1061. doi: 10.3390/biom15081061.
4
Building Blocks for the Screening of Histone Deacetylase Inhibitors Using μSPOT.
Methods Mol Biol. 2025;2934:147-166. doi: 10.1007/978-1-0716-4578-9_11.
7
Histone deacetylase in inflammatory bowel disease: novel insights.
Therap Adv Gastroenterol. 2025 Feb 16;18:17562848251318833. doi: 10.1177/17562848251318833. eCollection 2025.
8
Mechanism-Based Inhibition of Histone Deacetylase 6 by a Selenocyanate Is Subject to Redox Modulation.
J Am Chem Soc. 2025 Feb 26;147(8):6373-6377. doi: 10.1021/jacs.5c00157. Epub 2025 Feb 17.
9
Mechanism-Based Inhibition of Histone Deacetylase 6 by a Selenocyanate is Subject to Redox Modulation.
bioRxiv. 2025 Jan 4:2025.01.04.631333. doi: 10.1101/2025.01.04.631333.
10
Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge.
Cell Biochem Biophys. 2025 Jun;83(2):1375-1386. doi: 10.1007/s12013-024-01587-0. Epub 2024 Oct 18.

本文引用的文献

1
Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase .
J Med Chem. 2023 Oct 12;66(19):13821-13837. doi: 10.1021/acs.jmedchem.3c01345. Epub 2023 Oct 2.
2
Acetyl-methyllysine marks chromatin at active transcription start sites.
Nature. 2023 Oct;622(7981):173-179. doi: 10.1038/s41586-023-06565-9. Epub 2023 Sep 20.
3
Crystal structure of histone deacetylase 6 complexed with (R)-lipoic acid, an essential cofactor in central carbon metabolism.
J Biol Chem. 2023 Oct;299(10):105228. doi: 10.1016/j.jbc.2023.105228. Epub 2023 Sep 12.
4
Macrocyclic Octapeptide Binding and Inferences on Protein Substrate Binding to Histone Deacetylase 6.
ACS Chem Biol. 2023 Apr 21;18(4):959-968. doi: 10.1021/acschembio.3c00113. Epub 2023 Apr 7.
9
Development of the first non-hydroxamate selective HDAC6 degraders.
Chem Commun (Camb). 2022 Oct 4;58(79):11087-11090. doi: 10.1039/d2cc03712b.
10
Aromatic Ring Fluorination Patterns Modulate Inhibitory Potency of Fluorophenylhydroxamates Complexed with Histone Deacetylase 6.
Biochemistry. 2022 Sep 20;61(18):1945-1954. doi: 10.1021/acs.biochem.2c00332. Epub 2022 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验