Suppr超能文献

利用细胞核靶向铂纳米簇破坏间变性甲状腺癌中的糖酵解和DNA修复。

Disrupting glycolysis and DNA repair in anaplastic thyroid cancer with nucleus-targeting platinum nanoclusters.

作者信息

Pan Zongfu, Lu Xixuan, Hu Xi, Yu Ruixi, Che Yulu, Wang Jie, Xiao Lin, Chen Jianqiang, Yi Xiaofen, Tan Zhuo, Li Fangyuan, Ling Daishun, Huang Ping, Ge Minghua

机构信息

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.

出版信息

J Control Release. 2024 May;369:517-530. doi: 10.1016/j.jconrel.2024.03.057. Epub 2024 Apr 8.

Abstract

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.

摘要

癌细胞依靠有氧糖酵解和DNA修复信号来驱动肿瘤生长并产生耐药性。然而,例如借助纳米技术微调有氧糖酵解,抑制乳酸脱氢酶(LDH)以实现癌细胞代谢重编程,仍有待研究。在此,我们聚焦于间变性甲状腺癌(ATC),这是一种具有极高恶性程度且LDH高表达的癌症,并开发了一种pH响应性且靶向细胞核的铂纳米簇(Pt@TAT/sPEG),以同时靶向LDH并加剧DNA损伤。Pt@TAT/sPEG有效破坏LDH活性,减少乳酸生成和ATP水平,同时诱导ATC肿瘤细胞产生ROS、DNA损伤和凋亡。我们发现Pt@TAT/sPEG还能阻断核苷酸切除修复途径并实现有效的肿瘤细胞杀伤。在原位ATC异种移植模型中,与Pt@sPEG和顺铂相比,Pt@TAT/sPEG显示出更优异的肿瘤生长抑制效果。这种纳米策略为同时抑制糖酵解和DNA修复以进行代谢重编程及增强肿瘤化疗提供了一种可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验