College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
J Virol. 2024 May 14;98(5):e0045124. doi: 10.1128/jvi.00451-24. Epub 2024 Apr 9.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance.
The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)宿主范围广泛,包括河马,河马是半水生哺乳动物,在系统发育上与鲸目动物密切相关。在这项研究中,我们描述了河马血管紧张素转换酶 2(hiACE2)与 SARS-CoV-2 原型(PT)和关注变异株(VOCs)的刺突(S)蛋白受体结合结构域(RBD)结合特性。此外,还解析了 SARS-CoV-2 PT S 蛋白与 hiACE2 复合物的低温电子显微镜(cryo-EM)结构。结构和突变分析表明,hiACE2 特有的 L30 和 F83 在 hiACE2/SARS-CoV-2 RBD 相互作用中发挥了关键作用。此外,ACE2 同源物的比较和结构分析表明,鲸目动物可能有感染 SARS-CoV-2 的潜力。这些结果为河马易感染 SARS-CoV-2 提供了重要的分子见解,并提示了 SARS-CoV-2 VOCs 溢出的潜在风险和监测的必要性。
河马是第一种被报道感染 SARS-CoV-2 的半水生偶蹄目哺乳动物。探索 SARS-CoV-2 的入侵机制将为 SARS-CoV-2 在河马以及其他半水生哺乳动物和鲸目动物中的监测提供重要信息。在这里,我们发现河马 ACE2(hiACE2)可以有效地结合 SARS-CoV-2 原型(PT)和关注变异株(VOCs)的 RBD,并促进 SARS-CoV-2 PT 和 VOCs 假病毒进入 hiACE2 表达细胞。SARS-CoV-2 PT S 蛋白与 hiACE2 复合物的 cryo-EM 结构阐明了 RBD/hiACE2 界面中的几个关键残基,特别是 hiACE2 特有的 L30 和 F83,它们降低了与人类 ACE2 相比与 PT RBD 的结合亲和力。我们的工作提供了对种间传播的深入了解,并强调了监测半水生/水生哺乳动物中 SARS-CoV-2 宿主跳跃和溢出事件的必要性。