Suppr超能文献

铁载体介导的 . 获取铁

Siderophore-mediated iron acquisition by .

机构信息

Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.

Department of Rare Blood and Musculoskeletal Disorders, Sanofi, Cambridge, Massachusetts, USA.

出版信息

J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.

Abstract

UNLABELLED

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to the structural gene for the ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen (strain Kp52.145). One locus encodes IroN (locus on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci and ). Based on the crystal structure of FepA (1FEP), we modeled the tertiary structures of the FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of . In Kp52.145, loci and encoded receptors that primarily recognized and transported FeEnt; locus produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous strain hvKp1.

IMPORTANCE

Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by .

摘要

未加标签

微生物合成并分泌铁载体,这些铁载体在其微环境中结合并溶解沉淀或其他不可用的铁。革兰氏(-)细菌的 TonB 依赖性外膜受体捕获由此产生的三价铁载体,开始摄取过程。从它们与结构基因的相似性来看 ferric enterobactin (FeEnt) 受体,我们在人类和动物 ESKAPE 病原体(菌株 Kp52.145)中鉴定了四个同源基因。一个基因座编码 IroN(质粒 pII 上的基因座),另外三个基因座编码其他 FepA 同源物/旁系同源物(染色体基因座和)。基于 FepA(1FEP)的晶体结构,我们对 FepA 同源物的三级结构进行了建模,并在其预测的表面环中遗传工程改造了单个 Cys 取代。我们将表达 Cys 突变蛋白的细菌暴露于外源性荧光马来酰亚胺(FM)修饰下,并使用所得荧光标记细胞来光谱监测四种不同受体对儿茶酚三价铁载体的结合和转运。FM 修饰的 FepA 同源物是纳米传感器,它们定义了致病性菌株中铁载体的三价儿茶酚摄取途径。在 Kp52.145 中,基因座和编码主要识别和转运 FeEnt 的受体;基因座产生主要结合和转运 FeEnt 和葡萄糖化 FeEnt(FeGEnt)的受体;基因座 2380 编码一种结合三价儿茶酚化合物但不能检测到转运它们的蛋白质。这些传感器还表征了铁复合物(包括 FeGEnt)的摄取,包括高毒力、高粘液性的 hvKp1 菌株。

重要性

共生菌和致病菌都产生称为铁载体的小分子有机螯合剂,这些螯合剂强烈结合铁并增加其生物利用度。可变地产生四种铁载体,拮抗宿主铁螯合:enterobactin、葡萄糖化 enterobactin(也称为 salmochelin)、aerobactin 和 yersiniabactin,它们促进不同宿主组织的定植。大量证据将细菌铁获取与毒力和传染病联系起来。我们报告的数据解释了三价儿茶酚和其他铁载体的识别和转运,这对铁的获取至关重要。

相似文献

1
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
2
Fluorescent sensors of siderophores produced by bacterial pathogens.
J Biol Chem. 2022 Mar;298(3):101651. doi: 10.1016/j.jbc.2022.101651. Epub 2022 Jan 29.
3
Fluorescence High-Throughput Screening for Inhibitors of TonB Action.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00889-16. Print 2017 May 15.
4
The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.
FEMS Microbiol Lett. 2005 May 15;246(2):167-74. doi: 10.1016/j.femsle.2005.04.010.
5
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
6
Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin.
Microbiology (Reading). 2017 Nov;163(11):1590-1603. doi: 10.1099/mic.0.000545. Epub 2017 Oct 6.
7
Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria.
J Bacteriol. 1998 Dec;180(24):6689-96. doi: 10.1128/JB.180.24.6689-6696.1998.
8
Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4560-5. doi: 10.1073/pnas.94.9.4560.
10
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.

引用本文的文献

1
Spontaneous Emergence of Cefiderocol Resistance in KPC-163: Genomic and Transcriptomic Insights.
Antibiotics (Basel). 2025 Aug 15;14(8):832. doi: 10.3390/antibiotics14080832.
3
ProteoPlotter: An Executable Proteomics Visualization Tool Compatible with Perseus.
J Proteome Res. 2025 Jun 6;24(6):2698-2708. doi: 10.1021/acs.jproteome.4c00963. Epub 2025 May 13.
4
Enhanced invasion and survival of antibiotic- resistant pathotypes in host cells and strain-specific replication in blood.
Front Cell Infect Microbiol. 2025 Feb 14;15:1522573. doi: 10.3389/fcimb.2025.1522573. eCollection 2025.
5
Modulation of virulence and metabolic profiles in under indole-mediated stress response.
Front Cell Infect Microbiol. 2025 Feb 3;15:1546991. doi: 10.3389/fcimb.2025.1546991. eCollection 2025.
6
A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of in ICUs.
Microorganisms. 2024 Dec 11;12(12):2548. doi: 10.3390/microorganisms12122548.
7
High-Throughput Discovery of Synthetic Siderophores for Trojan Horse Antibiotics.
ACS Infect Dis. 2024 Nov 8;10(11):3821-3841. doi: 10.1021/acsinfecdis.4c00359. Epub 2024 Oct 22.
8
BioSolutions for Green Agriculture: Unveiling the Diverse Roles of Plant Growth-Promoting Rhizobacteria.
Int J Microbiol. 2024 Aug 29;2024:6181491. doi: 10.1155/2024/6181491. eCollection 2024.

本文引用的文献

1
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
2
Fluorescent sensors of siderophores produced by bacterial pathogens.
J Biol Chem. 2022 Mar;298(3):101651. doi: 10.1016/j.jbc.2022.101651. Epub 2022 Jan 29.
3
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
4
RcsAB and Fur Coregulate the Iron-Acquisition System via in NTUH-K2044 in Response to Iron Availability.
Front Cell Infect Microbiol. 2020 Jun 10;10:282. doi: 10.3389/fcimb.2020.00282. eCollection 2020.
5
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.
6
Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms.
Infect Dis Ther. 2020 Mar;9(1):17-40. doi: 10.1007/s40121-020-00286-6. Epub 2020 Feb 18.
7
Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens.
J Biol Chem. 2019 Mar 22;294(12):4682-4692. doi: 10.1074/jbc.RA118.006921. Epub 2019 Jan 24.
8
Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae.
J Clin Microbiol. 2018 Aug 27;56(9). doi: 10.1128/JCM.00776-18. Print 2018 Sep.
9
Iron Acquisition and Siderophore Release by Carbapenem-Resistant Sequence Type 258 .
mSphere. 2018 Apr 18;3(2). doi: 10.1128/mSphere.00125-18. Print 2018 Apr 25.
10
A Serendipitous Mutation Reveals the Severe Virulence Defect of a Mutant.
mSphere. 2017 Aug 23;2(4). doi: 10.1128/mSphere.00341-17. eCollection 2017 Jul-Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验