Acharya Debabrata, Mukhopadhyay Anirban
Department of Computer Science & Engineering, University of Kalyani, Kalyani-741235, West Bengal, India.
Brief Funct Genomics. 2024 Sep 27;23(5):549-560. doi: 10.1093/bfgp/elae013.
Multi-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims to comprehensively summarize and categorize these advancements, focusing on the integration of multi-omics data, which includes genomics, transcriptomics, proteomics and metabolomics, alongside clinical data. We discuss various machine learning techniques and computational methodologies used for integrating distinct omics datasets and provide valuable insights into their application. The review emphasizes both the challenges and opportunities present in multi-omics data integration, precision medicine and patient stratification, offering practical recommendations for method selection in various scenarios. Recent advances in deep learning and network-based approaches are also explored, highlighting their potential to harmonize diverse biological information layers. Additionally, we present a roadmap for the integration of multi-omics data in precision oncology, outlining the advantages, challenges and implementation difficulties. Hence this review offers a thorough overview of current literature, providing researchers with insights into machine learning techniques for patient stratification, particularly in precision oncology. Contact: anirban@klyuniv.ac.in.
多组学数据在精准医学中发挥着关键作用,主要用于理解不同组学之间多样的生物相互作用。多年来,机器学习方法已在这一背景下得到广泛应用。本综述旨在全面总结并分类这些进展,重点关注多组学数据的整合,其中包括基因组学、转录组学、蛋白质组学和代谢组学,以及临床数据。我们讨论了用于整合不同组学数据集的各种机器学习技术和计算方法,并对其应用提供了有价值的见解。本综述强调了多组学数据整合、精准医学和患者分层中存在的挑战与机遇,为各种场景下的方法选择提供了实用建议。还探讨了深度学习和基于网络的方法的最新进展,突出了它们协调不同生物信息层的潜力。此外,我们提出了精准肿瘤学中多组学数据整合的路线图,概述了其优势、挑战和实施难点。因此,本综述全面概述了当前文献,为研究人员提供了有关用于患者分层的机器学习技术的见解,特别是在精准肿瘤学方面。联系方式:anirban@klyuniv.ac.in