Suppr超能文献

TRIPOD+AI 声明:报告使用回归或机器学习方法的临床预测模型的更新指南。

TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods.

机构信息

Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.

Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.

出版信息

BMJ. 2024 Apr 16;385:e078378. doi: 10.1136/bmj-2023-078378.

Abstract

The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation.

摘要

TRIPOD(个体预后或诊断的多变量预测模型的透明报告)声明于 2015 年发布,为开发或评估预测模型的性能的研究提供了最低报告建议。此后,预测领域的方法学进展包括广泛使用基于机器学习方法的人工智能(AI)来开发预测模型。因此,需要对 TRIPOD 声明进行更新。TRIPOD+AI 为报告预测模型研究提供了协调一致的指导,无论是否使用回归建模或机器学习方法。新的清单取代了 2015 年的 TRIPOD 清单,该清单不再使用。本文描述了 TRIPOD+AI 的制定过程,并介绍了扩展后的 27 项清单,其中每个报告建议都有更详细的解释,以及 TRIPOD+AI 摘要清单。TRIPOD+AI 的目的是促进开发预测模型或评估其性能的研究的完整、准确和透明报告。完整的报告将有助于研究评估、模型评估和模型实施。

相似文献

4
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement.
Eur Urol. 2015 Jun;67(6):1142-1151. doi: 10.1016/j.eururo.2014.11.025. Epub 2015 Jan 5.
5
TRIPOD+AI: an updated reporting guideline for clinical prediction models.
BMJ. 2024 Apr 16;385:q824. doi: 10.1136/bmj.q824.

引用本文的文献

4
Deep learning-based model for detection of intracranial waveforms with poor brain compliance in southern Thailand.
Acute Crit Care. 2025 Aug;40(3):473-481. doi: 10.4266/acc.001425. Epub 2025 Aug 29.
6
9
Design aspects for prognostic factor studies.
BMJ Open. 2025 Aug 31;15(8):e095065. doi: 10.1136/bmjopen-2024-095065.

本文引用的文献

1
ACCORD (ACcurate COnsensus Reporting Document): A reporting guideline for consensus methods in biomedicine developed via a modified Delphi.
PLoS Med. 2024 Jan 23;21(1):e1004326. doi: 10.1371/journal.pmed.1004326. eCollection 2024 Jan.
5
Open science practices need substantial improvement in prognostic model studies in oncology using machine learning.
J Clin Epidemiol. 2024 Jan;165:111199. doi: 10.1016/j.jclinepi.2023.10.015. Epub 2023 Oct 28.
6
Open Science 2.0: Towards a truly collaborative research ecosystem.
PLoS Biol. 2023 Oct 19;21(10):e3002362. doi: 10.1371/journal.pbio.3002362. eCollection 2023 Oct.
8
Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990-2022).
Artif Intell Med. 2023 May;139:102536. doi: 10.1016/j.artmed.2023.102536. Epub 2023 Mar 29.
9
Commentary: Patient Perspectives on Artificial Intelligence; What have We Learned and How Should We Move Forward?
Adv Ther. 2023 Jun;40(6):2563-2572. doi: 10.1007/s12325-023-02511-3. Epub 2023 Apr 12.
10
Systematic review finds "spin" practices and poor reporting standards in studies on machine learning-based prediction models.
J Clin Epidemiol. 2023 Jun;158:99-110. doi: 10.1016/j.jclinepi.2023.03.024. Epub 2023 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验