Suppr超能文献

单体型功能评分可改善人类复杂性状的生物学解释和跨血统多基因预测。

Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits.

机构信息

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Elife. 2024 Apr 19;12:RP92574. doi: 10.7554/eLife.92574.

Abstract

We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

摘要

我们提出了一个新的人类遗传关联研究框架

在每个基因座上,使用深度学习模型(在本研究中为 Sei)计算每个个体的两种单倍型的功能基因组活性得分。该得分定义为单倍型功能得分(Haplotype Function Score,HFS),在关联研究中取代了原始基因型。将 HFS 框架应用于英国生物库中的 14 种复杂性状,我们确定了 3619 个独立的 HFS-性状关联,其显著性为 p < 5 × 10。精细映射揭示了 2699 个因果关联,与基于单核苷酸多态性(SNP)的分析相比,每个性状的因果发现中位数增加了 63 个。基于 HFS 的富集分析发现了 727 条通路-性状关联和 153 个组织-性状关联,具有很强的生物学可解释性,包括“昼夜节律通路-睡眠类型”和“花生四烯酸-智力”。最后,我们应用最小绝对收缩和选择算子(LASSO)回归将 HFS 预测得分与基于 SNP 的多基因风险评分相结合,这在跨种族多基因预测中提高了 16.1-39.8%。我们得出结论,HFS 是理解人类复杂性状遗传基础的一种很有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e37/11031082/54783f361c9c/elife-92574-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验