Suppr超能文献

绘制科学领域的慈善支持情况。

Mapping philanthropic support of science.

作者信息

Shekhtman Louis M, Gates Alexander J, Barabási Albert-László

机构信息

Network Science Institute, Northeastern University, Boston, MA, 02115, USA.

School of Data Science, University of Virginia, Charlottesville, VA, 22904, USA.

出版信息

Sci Rep. 2024 Apr 24;14(1):9397. doi: 10.1038/s41598-024-58367-2.

Abstract

While philanthropic support for science has increased in the past decade, there is limited quantitative knowledge about the patterns that characterize it and the mechanisms that drive its distribution. Here, we map philanthropic funding to universities and research institutions based on IRS tax forms from 685,397 non-profit organizations. We identify nearly one million grants supporting institutions involved in science and higher education, finding that in volume and scope, philanthropy is a significant source of funds, reaching an amount that rivals some of the key federal agencies like the NSF and NIH. Our analysis also reveals that philanthropic funders tend to focus locally, indicating that criteria beyond research excellence play an important role in funding decisions, and that funding relationships are stable, i.e. once a grant-giving relationship begins, it tends to continue in time. Finally, we show that the bipartite funder-recipient network displays a highly overrepresented motif indicating that funders who share one recipient also share other recipients and we show that this motif contains predictive power for future funding relationships. We discuss the policy implications of our findings on inequality in science, scientific progress, and the role of quantitative approaches to philanthropy.

摘要

尽管在过去十年中,对科学的慈善支持有所增加,但关于其特征模式和驱动其分布的机制的定量知识却很有限。在这里,我们根据685397个非营利组织的美国国税局税务表格,绘制了对大学和研究机构的慈善资金分布图。我们识别出近100万笔支持参与科学和高等教育机构的赠款,发现从规模和范围来看,慈善事业是一个重要的资金来源,其金额可与美国国家科学基金会(NSF)和美国国立卫生研究院(NIH)等一些关键联邦机构相媲美。我们的分析还表明,慈善资助者倾向于关注本地,这表明除了卓越研究之外的标准在资助决策中起着重要作用,并且资助关系是稳定的,即一旦赠款授予关系开始,它往往会持续下去。最后,我们表明二分资助者 - 受助者网络显示出一个高度过度代表的模体,表明共享一个受助者的资助者也共享其他受助者,并且我们表明这个模体对未来的资助关系具有预测能力。我们讨论了我们的研究结果对科学不平等、科学进步以及慈善事业定量方法作用的政策影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5339/11043411/01bb8fa85057/41598_2024_58367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验