Paquette Shannon E, Oduor Cliff I, Gaulke Amy, Stefan Sabina, Bronk Peter, Dafonseca Vanny, Barulin Nikolai, Lee Cadence, Carley Rachel, Morrison Alan R, Choi Bum-Rak, Bailey Jeffrey A, Plavicki Jessica S
Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
bioRxiv. 2024 Apr 20:2024.04.17.589909. doi: 10.1101/2024.04.17.589909.
Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional assessments via electro- and echocardiograms at 12 mpf reveal that mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling . Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.
心脏巨噬细胞生物学的最新进展拓宽了我们对巨噬细胞在心脏中关键功能的理解。因此,人们对了解不同巨噬细胞亚群对心脏发育和功能的独立贡献有了进一步的兴趣。在这里,我们证明,干扰素调节因子8(Irf8)阳性的胚胎来源巨噬细胞的基因缺失会显著破坏成年斑马鱼的心脏传导、心室功能和神经支配。在受精后4个月(mpf),纯合突变体的心房动作电位持续时间显著缩短,且参与心脏收缩的基因有显著差异表达。在12 mpf时通过心电图和超声心动图进行的功能评估显示,突变体具有致心律失常性,并表现出舒张功能障碍和心室僵硬。为了确定Irf8缺失的斑马鱼功能障碍的分子驱动因素,我们进行了单细胞RNA测序和免疫组织化学,结果显示白细胞浸润增加、心外膜激活、间充质基因表达和纤维化。Irf8缺失的心脏也有过度神经支配和异常的轴突模式,这是一种以前在心脏巨噬细胞缺失的情况下未评估过的表型。基因本体分析支持激活的心外膜来源细胞(EPDCs)在促进神经发生和神经元重塑中的新作用。总之,这些数据揭示了胚胎巨噬细胞缺失后显著的心脏异常,并扩展了我们对巨噬细胞在心脏生理学和维持心脏稳态健康中的关键功能的认识。