Suppr超能文献

基因组因素塑造了子囊菌酵母中碳和氮代谢生态位宽度。

Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.

作者信息

Opulente Dana A, LaBella Abigail Leavitt, Harrison Marie-Claire, Wolters John F, Liu Chao, Li Yonglin, Kominek Jacek, Steenwyk Jacob L, Stoneman Hayley R, VanDenAvond Jenna, Miller Caroline R, Langdon Quinn K, Silva Margarida, Gonçalves Carla, Ubbelohde Emily J, Li Yuanning, Buh Kelly V, Jarzyna Martin, Haase Max A B, Rosa Carlos A, ČCadež Neža, Libkind Diego, DeVirgilio Jeremy H, Hulfachor Amanda Beth, Kurtzman Cletus P, Sampaio José Paulo, Gonçalves Paula, Zhou Xiaofan, Shen Xing-Xing, Groenewald Marizeth, Rokas Antonis, Hittinger Chris Todd

机构信息

Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA.

DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA.

出版信息

Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.

Abstract

Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.

摘要

生物在生态位宽度上表现出广泛的差异,从非常狭窄( specialists)到非常宽泛(generalists)。已经提出了两种一般范式来解释这种差异:(i)性能效率与宽度之间的权衡,以及(ii)外在(环境)和内在(基因组)因素的共同影响。我们收集了来自古代真菌亚门酵母纲几乎所有已知物种(来自1051个物种的1154个酵母菌株)的基因组、代谢和生态数据,这些菌株在24种不同环境条件下生长,以研究生态位宽度的进化。我们发现,酵母之间碳利用性状宽度的巨大差异源于编码特定代谢途径的基因的内在差异,但我们发现权衡的证据有限。这些全面的数据表明,内在因素塑造了微生物生态位宽度的变化。

相似文献

1
Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.
2
Genomic and ecological factors shaping specialism and generalism across an entire subphylum.
bioRxiv. 2023 Sep 8:2023.06.19.545611. doi: 10.1101/2023.06.19.545611.
3
Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework.
Yeast. 2024 Oct;41(10):615-628. doi: 10.1002/yea.3981. Epub 2024 Sep 18.
4
Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data.
G3 (Bethesda). 2016 Dec 7;6(12):3927-3939. doi: 10.1534/g3.116.034744.
5
Factors driving metabolic diversity in the budding yeast subphylum.
BMC Biol. 2018 Mar 2;16(1):26. doi: 10.1186/s12915-018-0498-3.
7
Comparative genomics of biotechnologically important yeasts.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9882-7. doi: 10.1073/pnas.1603941113. Epub 2016 Aug 17.
9
Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum.
Cell. 2018 Nov 29;175(6):1533-1545.e20. doi: 10.1016/j.cell.2018.10.023. Epub 2018 Nov 8.
10
The evolution of fungal metabolic pathways.
PLoS Genet. 2014 Dec 4;10(12):e1004816. doi: 10.1371/journal.pgen.1004816. eCollection 2014 Dec.

引用本文的文献

1
Advances in adaptive laboratory evolution applications for .
Synth Syst Biotechnol. 2025 Jul 30;10(4):1306-1321. doi: 10.1016/j.synbio.2025.07.011. eCollection 2025 Dec.
2
Predicting natural variation in the yeast phenotypic landscape with machine learning.
Mol Syst Biol. 2025 Sep 1. doi: 10.1038/s44320-025-00136-y.
5
Genomic and secretomic analyses of Blastobotrys yeasts reveal key xylanases for biomass decomposition.
Appl Microbiol Biotechnol. 2025 Aug 1;109(1):175. doi: 10.1007/s00253-025-13556-5.
6
Machine learning identifies novel signatures of antifungal drug resistance in yeasts.
bioRxiv. 2025 May 10:2025.05.09.653161. doi: 10.1101/2025.05.09.653161.
7
Translating microbial kinetics into quantitative responses and testable hypotheses using Kinbiont.
Nat Commun. 2025 Jul 11;16(1):6440. doi: 10.1038/s41467-025-61592-6.
8
The role of metabolism in shaping enzyme structures over 400 million years.
Nature. 2025 Jul 9. doi: 10.1038/s41586-025-09205-6.
10
Machine learning reveals genes impacting oxidative stress resistance across yeasts.
Nat Commun. 2025 Jul 1;16(1):5866. doi: 10.1038/s41467-025-60189-3.

本文引用的文献

1
A genome-informed higher rank classification of the biotechnologically important fungal subphylum .
Stud Mycol. 2023 Jun;105:1-22. doi: 10.3114/sim.2023.105.01. Epub 2023 May 25.
2
Saccharomycotina yeasts defy long-standing macroecological patterns.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2316031121. doi: 10.1073/pnas.2316031121. Epub 2024 Feb 27.
3
Mitochondrial genome diversity across the subphylum Saccharomycotina.
Front Microbiol. 2023 Nov 23;14:1268944. doi: 10.3389/fmicb.2023.1268944. eCollection 2023.
4
Taxogenomic analysis of a novel yeast species isolated from soil, Pichia galeolata sp. nov.
Yeast. 2023 Dec;40(12):608-615. doi: 10.1002/yea.3905. Epub 2023 Nov 3.
6
Taxonomy of Pathogenic Yeasts Candida, Cryptococcus, Malassezia, and Trichosporon.
Med Mycol J. 2022;63(4):119-132. doi: 10.3314/mmj.22.004.
7
Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum.
Nat Chem Biol. 2023 Feb;19(2):218-229. doi: 10.1038/s41589-022-01202-4. Epub 2022 Nov 28.
8
A generalist-specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2118879119. doi: 10.1073/pnas.2118879119. Epub 2022 Apr 4.
9
A computational screen for alternative genetic codes in over 250,000 genomes.
Elife. 2021 Nov 9;10:e71402. doi: 10.7554/eLife.71402.
10
Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates.
Yeast. 2022 Jan;39(1-2):55-68. doi: 10.1002/yea.3679. Epub 2021 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验