Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA 92617, United States.
M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia.
Eur J Pharm Sci. 2024 Jun 1;197:106776. doi: 10.1016/j.ejps.2024.106776. Epub 2024 Apr 23.
The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.
多种耐药(MDR)菌株的出现导致微生物感染的治疗出现严重问题,因为治疗选择有限。抗菌肽(AMPs)作为有前途的抗生素替代品引起了相当大的关注,可用于对抗 MDR 细菌和真菌感染。在此,我们展示了一系列由各种非遗传编码的亲水性和疏水性氨基酸部分组成的小的两亲性膜活性环状肽。值得注意的是,先导环状肽 3b 和 4b 对耐药性革兰氏阳性(MIC = 1.5-6.2μg/mL)和革兰氏阴性(MIC = 12.5-25μg/mL)细菌以及真菌(MIC = 3.1-12.5μg/mL)表现出广谱活性。此外,先导肽显示出与标准抗生素相当的大量抗生物膜作用。溶血(HC = 230μg/mL)和细胞毒性(在 100μg/mL 时对四种不同哺乳动物细胞的细胞活力 >70%)测定结果表明,3b 对微生物具有选择性杀伤作用,而对哺乳动物细胞没有杀伤作用。钙黄绿素染料渗漏实验证实了 3b 和 4b 的膜溶解作用,扫描电子显微镜进一步证实了这一点。通过核磁共振(NMR)光谱结合分子动力学(MD)模拟评估了 3b 和 4b 在水溶液中的行为及其与磷脂双层的相互作用,为理解它们的膜溶解作用提供了坚实的结构基础。此外,3b 在人血浆中稳定(t = 13 h),并且对耐抗生素的金黄色葡萄球菌和大肠杆菌没有表现出耐药性发展的迹象。这些发现强调了这些新设计的两亲性环状肽作为有前途的抗感染剂的潜力,特别是对抗革兰氏阳性菌。