Belghit Hayet, Spivak Mariano, Dauchez Manuel, Baaden Marc, Jonquet-Prevoteau Jessica
Université de Reims Champagne-Ardenne, CNRS, MEDYC, Reims, France.
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, Paris, France.
Front Bioinform. 2024 Apr 11;4:1356659. doi: 10.3389/fbinf.2024.1356659. eCollection 2024.
Advances in simulations, combined with technological developments in high-performance computing, have made it possible to produce a physically accurate dynamic representation of complex biological systems involving millions to billions of atoms over increasingly long simulation times. The analysis of these computed simulations is crucial, involving the interpretation of structural and dynamic data to gain insights into the underlying biological processes. However, this analysis becomes increasingly challenging due to the complexity of the generated systems with a large number of individual runs, ranging from hundreds to thousands of trajectories. This massive increase in raw simulation data creates additional processing and visualization challenges. Effective visualization techniques play a vital role in facilitating the analysis and interpretation of molecular dynamics simulations. In this paper, we focus mainly on the techniques and tools that can be used for visualization of molecular dynamics simulations, among which we highlight the few approaches used specifically for this purpose, discussing their advantages and limitations, and addressing the future challenges of molecular dynamics visualization.
模拟技术的进步,结合高性能计算的技术发展,使得在越来越长的模拟时间内,能够生成涉及数百万到数十亿个原子的复杂生物系统的物理精确动态表示成为可能。对这些计算模拟进行分析至关重要,这涉及对结构和动态数据的解释,以深入了解潜在的生物过程。然而,由于生成的系统复杂,有大量的单独运行,从数百到数千条轨迹不等,这种分析变得越来越具有挑战性。原始模拟数据的大量增加带来了额外的处理和可视化挑战。有效的可视化技术在促进分子动力学模拟的分析和解释方面起着至关重要的作用。在本文中,我们主要关注可用于分子动力学模拟可视化的技术和工具,其中我们突出了专门用于此目的的几种方法,讨论了它们的优点和局限性,并探讨了分子动力学可视化未来面临的挑战。