Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece.
Biotechnol Bioeng. 2024 Jul;121(7):2067-2078. doi: 10.1002/bit.28731. Epub 2024 Apr 28.
Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 2-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary β-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.
糖苷水解酶(GH)30 家族木聚糖酶因其能够降解木质素等难降解的半纤维素而具有生物技术应用价值。本研究聚焦于嗜热真菌Thermothelomyces thermophilus 来源的 GH30 家族 7 亚家族 TtXyn30A,它以“内”和“外”两种方式作用于 GX,分别释放甲基葡萄糖醛酸支链木二糖(XOs)和木二糖。与生化分析结果一致,与 2-(4-O-甲基-α-D-葡萄糖醛酸基)-木三糖(UXX)复合物状态下的无活性 TtXyn30A 晶体结构表明,先前被鉴定为替代催化残基的 E233 参与了经过修饰的木聚糖的水解。在-1 亚位点,木糖采用扭曲构象,表明 TtXyn30AEE 与 UXX 的米氏复合物被捕获在半功能活性位点中。底物结合后观察到最显著的结构重排发生在残基 W127 和 E233。代表“外”功能的中性 XOs 的结构清楚地显示了在非糖基亚位点的非特异性结合,而在糖基位点,木糖分子通过多种相互作用被容纳。最后,在催化和次级β-结构域之间的界面上发现了一个非生产性配体结合位点,所有 GH30 酶都存在该位点。这些发现提高了对双功能 GH30 酶作用机制的现有认识,为酶工程领域的应用提供了参考。