Suppr超能文献

发育起源塑造儿科癌症基因组。

Developmental origins shape the paediatric cancer genome.

机构信息

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Nat Rev Cancer. 2024 Jun;24(6):382-398. doi: 10.1038/s41568-024-00684-9. Epub 2024 May 2.

Abstract

In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.

摘要

在过去的二十年中,技术的进步使我们对儿科癌症基因组有了前所未有的深入了解,揭示了其与成人癌症不同的特征。起源于发育中的组织,儿科癌症通常突变负担较低,由破坏转录活性、染色质状态、非编码顺式调控区域和其他生物学功能的变异驱动。在每个肿瘤中,都有多个具有不同状态的细胞群体,其中一些谱系可以追溯到其胎儿起源。全基因组遗传筛选已经确定了与儿科癌症起源细胞和转录失调相关的脆弱性,这些脆弱性已成为设计新治疗方法的宝贵资源,包括小分子治疗、免疫治疗和靶向蛋白降解等方法。在这篇综述中,我们从泛癌症的角度介绍了儿科癌症在这些方面的最新发现,并对未来的研究进行了展望。

相似文献

1
Developmental origins shape the paediatric cancer genome.
Nat Rev Cancer. 2024 Jun;24(6):382-398. doi: 10.1038/s41568-024-00684-9. Epub 2024 May 2.
2
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours.
Nature. 2018 Mar 15;555(7696):371-376. doi: 10.1038/nature25795. Epub 2018 Feb 28.
3
Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours.
Nat Rev Cancer. 2019 Aug;19(8):420-438. doi: 10.1038/s41568-019-0169-x. Epub 2019 Jul 12.
4
Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
Mol Cell. 2020 Mar 19;77(6):1307-1321.e10. doi: 10.1016/j.molcel.2019.12.027. Epub 2020 Jan 17.
5
Pan-cancer analysis of whole genomes.
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
6
Role of epigenetics in paediatric cancer pathogenesis & drug resistance.
Br J Cancer. 2025 May;132(9):757-769. doi: 10.1038/s41416-025-02961-2. Epub 2025 Mar 7.
7
A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples.
Cell. 2018 Apr 5;173(2):386-399.e12. doi: 10.1016/j.cell.2018.03.027.
8
The role of alternative splicing in cancer: From oncogenesis to drug resistance.
Drug Resist Updat. 2020 Dec;53:100728. doi: 10.1016/j.drup.2020.100728. Epub 2020 Sep 28.
9
Pathway and network analysis of more than 2500 whole cancer genomes.
Nat Commun. 2020 Feb 5;11(1):729. doi: 10.1038/s41467-020-14367-0.
10
Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.
Cancer Discov. 2016 Nov;6(11):1215-1229. doi: 10.1158/2159-8290.CD-16-0745. Epub 2016 Oct 19.

引用本文的文献

2
Targeting tumor angiogenesis and metabolism: a new perspective in pediatric thoracic tumor therapy.
Front Cell Dev Biol. 2025 Mar 27;13:1558403. doi: 10.3389/fcell.2025.1558403. eCollection 2025.
3
Bridging molecular advancements and clinical challenges in pediatric oncology.
World J Pediatr. 2025 Feb;21(2):120-122. doi: 10.1007/s12519-024-00870-7.
4
Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells.
Cancer Control. 2024 Jan-Dec;31:10732748241270564. doi: 10.1177/10732748241270564.
5
SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection.
Clin Cancer Res. 2024 Sep 13;30(18):4100-4114. doi: 10.1158/1078-0432.CCR-24-1063.

本文引用的文献

1
A new genomic framework to categorize pediatric acute myeloid leukemia.
Nat Genet. 2024 Feb;56(2):281-293. doi: 10.1038/s41588-023-01640-3. Epub 2024 Jan 11.
2
Targeting of intracellular oncoproteins with peptide-centric CARs.
Nature. 2023 Nov;623(7988):820-827. doi: 10.1038/s41586-023-06706-0. Epub 2023 Nov 8.
3
Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability.
Nat Struct Mol Biol. 2023 Nov;30(11):1640-1652. doi: 10.1038/s41594-023-01096-3. Epub 2023 Sep 21.
4
Germline pathogenic variants in neuroblastoma patients are enriched in BARD1 and predict worse survival.
J Natl Cancer Inst. 2024 Jan 10;116(1):149-159. doi: 10.1093/jnci/djad183.
5
BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma.
J Natl Cancer Inst. 2024 Jan 10;116(1):138-148. doi: 10.1093/jnci/djad182.
7
Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities.
Nat Struct Mol Biol. 2023 Aug;30(8):1160-1171. doi: 10.1038/s41594-023-01041-4. Epub 2023 Jul 24.
8
Improving quality and quantity of life for childhood cancer survivors globally in the twenty-first century.
Nat Rev Clin Oncol. 2023 Oct;20(10):678-696. doi: 10.1038/s41571-023-00802-w. Epub 2023 Jul 24.
9
Phase 2 trial of palbociclib and ganitumab in patients with relapsed Ewing sarcoma.
Cancer Med. 2023 Jul;12(14):15207-15216. doi: 10.1002/cam4.6208. Epub 2023 Jun 12.
10
Mitotic bookmarking by SWI/SNF subunits.
Nature. 2023 Jun;618(7963):180-187. doi: 10.1038/s41586-023-06085-6. Epub 2023 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验