Suppr超能文献

土壤微生物在可生物降解微塑料对植物的有害影响中起着重要作用。

Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants.

作者信息

Liu Jiaxi, Han Siqi, Wang Peiyuan, Zhang Xiaofeng, Zhang Jiuyu, Hou Lijun, Zhang Yiqiong, Wang Yufan, Li Li, Lin Yanbing

机构信息

College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200438, China.

出版信息

Sci Total Environ. 2024 Jul 10;933:172933. doi: 10.1016/j.scitotenv.2024.172933. Epub 2024 May 3.

Abstract

Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.

摘要

可生物降解塑料的开发是为了减轻传统塑料造成的环境污染。研究表明,可生物降解微塑料对植物和微生物的影响与不可生物降解微塑料类似,但其对蔬菜作物的影响尚无充分记录。此外,受可生物降解微塑料影响的土壤微生物对微塑料归宿的作用仍未得到验证。在本研究中,将小白菜种植在预先用浓度为0.05%和2%的低密度聚乙烯微塑料(LDPE-MPs)和聚己二酸丁二醇酯-对苯二甲酸丁二醇酯微塑料(PBAT-MPs)培养一年的土壤中。高浓度的PBAT-MPs显著降低了生物量,降至对照的5.83%。在存在PBAT-MPs的情况下,根际细菌群落中甲基嗜盐碱菌属、IS-44和UTCFX1的丰度显著增加。此外,这些微塑料显著提高了土壤酶活性。用三张PBAT塑料片进行培养试验,以评估对照土壤(对照土壤)和用高浓度PBAT-MPs处理的土壤(PBAT-MPs土壤)中变化的细菌群落的功能。扫描电子显微镜和原子转移显微镜(SEM/ATM)结果证实了PBAT-MPs土壤中PBAT降解增强。PICRUST2分析表明,PBAT-MPs土壤中与物质降解相关的途径上调。此外,在PBAT-MPs土壤中发现具有PBAT-MPs降解能力菌株的比例更高。我们的结果证实,PBAT-MPs显著抑制蔬菜作物生长,且受PBAT-MPs影响的土壤细菌群落在其降解过程中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验