Suppr超能文献

乳腺癌和卵巢癌的顺式和反式 eQTL TWASs 在 BCAC 和 OCAC 联盟中鉴定出了 100 多个易感基因。

Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Am J Hum Genet. 2024 Jun 6;111(6):1084-1099. doi: 10.1016/j.ajhg.2024.04.012. Epub 2024 May 8.

Abstract

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.

摘要

全转录组关联研究 (TWAS) 已经研究了遗传调控转录活性在乳腺癌和卵巢癌发病机制中的作用。然而,迄今为止所采用的方法主要集中于认为在附近靶基因上顺式作用的风险相关 SNP 的调节作用。随着越来越多的证据表明变体对基因表达具有远端(顺式)调节作用,我们使用考虑顺式和反式表达数量性状基因座 (eQTL) 影响的贝叶斯全基因组 TWAS 方法 (BGW-TWAS) 对乳腺癌和卵巢癌进行了 TWAS。我们将 BGW-TWAS 应用于来自基因型-组织表达项目的乳腺和卵巢组织的全基因组和 RNA 测序数据,以训练表达推断模型。我们将这些模型应用于来自乳腺癌和卵巢癌协会联盟的大规模 GWAS 汇总统计数据,以鉴定与总体乳腺癌、非粘液上皮性卵巢癌和 10 种癌症亚型风险相关的基因。我们鉴定了 101 个与乳腺癌表型相关的基因和 8 个与卵巢表型相关的基因。这些基因座包括已建立的风险基因和几个新的候选风险基因座,例如 ACAP3,其关联主要由反式 eQTL 驱动。我们使用这些癌症表型的独立 GWAS 的汇总统计数据复制了几个关联。我们还使用癌症基因组图谱中正常和肿瘤乳腺组织的基因型和表达数据来检查我们训练的表达推断模型的性能。这项工作代表了对这些疾病复杂分子机制中反式 eQTL 作用的深入研究。

相似文献

1
Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
Am J Hum Genet. 2024 Jun 6;111(6):1084-1099. doi: 10.1016/j.ajhg.2024.04.012. Epub 2024 May 8.
3
CADET: Enhanced transcriptome-wide association analyses in admixed samples using eQTL summary data.
Am J Hum Genet. 2025 Jul 3;112(7):1580-1596. doi: 10.1016/j.ajhg.2025.05.010. Epub 2025 Jun 13.
6
Genetic transcriptional regulation profiling of cartilage reveals pathogenesis of osteoarthritis.
EBioMedicine. 2025 Jul;117:105821. doi: 10.1016/j.ebiom.2025.105821. Epub 2025 Jun 26.
8
Unveiling regulatory variants in the blood transcriptome and their association with immunity traits in pigs.
Front Immunol. 2025 Jun 5;16:1582982. doi: 10.3389/fimmu.2025.1582982. eCollection 2025.
10
Enhancing nonlinear transcriptome- and proteome-wide association studies via trait imputation with applications to Alzheimer's disease.
PLoS Genet. 2025 Apr 10;21(4):e1011659. doi: 10.1371/journal.pgen.1011659. eCollection 2025 Apr.

引用本文的文献

2
Characterizing somatic mutations in ovarian cancer germline risk regions.
Commun Biol. 2025 Apr 29;8(1):676. doi: 10.1038/s42003-025-08072-1.
3
scTWAS Atlas: an integrative knowledgebase of single-cell transcriptome-wide association studies.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1195-D1204. doi: 10.1093/nar/gkae931.

本文引用的文献

1
Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions.
Am J Hum Genet. 2024 Jun 6;111(6):1061-1083. doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.
2
Trans-eQTL mapping in gene sets identifies network effects of genetic variants.
Cell Genom. 2024 Apr 10;4(4):100538. doi: 10.1016/j.xgen.2024.100538. Epub 2024 Apr 1.
4
Aggregative trans-eQTL analysis detects trait-specific target gene sets in whole blood.
Nat Commun. 2022 Jul 26;13(1):4323. doi: 10.1038/s41467-022-31845-9.
6
TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8.
HGG Adv. 2021 Nov 4;3(1):100068. doi: 10.1016/j.xhgg.2021.100068. eCollection 2022 Jan 13.
7
Common variants in breast cancer risk loci predispose to distinct tumor subtypes.
Breast Cancer Res. 2022 Jan 4;24(1):2. doi: 10.1186/s13058-021-01484-x.
8
A catalog of curated breast cancer genes.
Breast Cancer Res Treat. 2022 Jan;191(2):431-441. doi: 10.1007/s10549-021-06441-y. Epub 2021 Nov 10.
9
From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
Front Genet. 2021 Sep 30;12:713230. doi: 10.3389/fgene.2021.713230. eCollection 2021.
10
Introduction to DOK2 and its potential role in cancer.
Physiol Res. 2021 Nov 29;70(5):671-685. doi: 10.33549/physiolres.934710. Epub 2021 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验