Marie Lößlein Sarah, Merz Rolf, Rodríguez-Martínez Yerila, Schäfer Florian, Grützmacher Philipp G, Horwat David, Kopnarski Michael, Mücklich Frank
Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany.
Institute for Surface and Thin Film Technologies (IFOS) at the University of Kaiserslautern-Landau (RPTU), Germany.
J Colloid Interface Sci. 2024 Sep 15;670:658-675. doi: 10.1016/j.jcis.2024.04.212. Epub 2024 May 3.
To understand the complex interplay of topography and surface chemistry in wetting, fundamental studies investigating both parameters are needed. Due to the sensitivity of wetting to miniscule changes in one of the parameters it is imperative to precisely control the experimental approach. A profound understanding of their influence on wetting facilitates a tailored design of surfaces with unique functionality. We present a multi-step study: The influence of surface chemistry is analyzed by determining the adsorption of volatile carbonous species (A) and by sputter deposition of metallic copper and copper oxides on flat copper substrates (B). A precise surface topography is created by laser processing. Isotropic topography is created by ps laser processing (C), and hierarchical anisotropic line patterns are produced by direct laser interference patterning (DLIP) with different pulse durations (D). Our results reveal that the long-term wetting response of polished copper surfaces stabilizes with time despite ongoing accumulation of hydrocarbons and is dominated by this adsorption layer over the oxide state of the substrate (Cu, CuO, CuO). The surfaces' wetting response can be precisely tuned by tailoring the topography via laser processing. The sub-pattern morphology of primary line-like patterns showed great impact on the static contact angle, wetting anisotropy, and water adhesion. An increased roughness inside the pattern valleys combined with a minor roughness on pattern peaks favors air-inclusions, isotropic hydrophobicity, and low water adhesion. Increasing depth of the primary topography can also induce air-inclusions despite increasing peak roughness while time dependent wetting transitions were observed.
为了理解润湿性中形貌与表面化学的复杂相互作用,需要开展同时研究这两个参数的基础研究。由于润湿性对其中一个参数的微小变化很敏感,因此精确控制实验方法至关重要。深入了解它们对润湿性的影响有助于设计具有独特功能的定制表面。我们开展了一项多步骤研究:通过测定挥发性含碳物质的吸附情况(A)以及在平整的铜基底上溅射沉积金属铜和氧化铜(B)来分析表面化学的影响。通过激光加工创建精确的表面形貌。通过皮秒激光加工创建各向同性形貌(C),并通过具有不同脉冲持续时间的直接激光干涉图案化(DLIP)产生分级各向异性线条图案(D)。我们的结果表明,尽管碳氢化合物不断积累,但抛光铜表面的长期润湿性响应会随时间稳定下来,并且该吸附层在基底的氧化物状态(Cu、CuO、Cu₂O)之上起主导作用。通过激光加工调整形貌,可以精确调节表面的润湿性响应。初级线状图案的亚图案形态对静态接触角、润湿性各向异性和水附着力有很大影响。图案谷内粗糙度的增加与图案峰上较小的粗糙度相结合有利于空气夹杂、各向同性疏水性和低水附着力。尽管峰粗糙度增加,但初级形貌深度的增加也会导致空气夹杂,同时观察到随时间变化的润湿性转变。