Suppr超能文献

肿瘤与淋巴细胞之间的空间距离可预测可切除肺腺癌患者的生存期。

Spatial distance between tumor and lymphocyte can predict the survival of patients with resectable lung adenocarcinoma.

作者信息

Pan Xipeng, Feng Siyang, Wang Yumeng, Chen Jiale, Lin Huan, Wang Zimin, Hou Feihu, Lu Cheng, Chen Xin, Liu Zhenbing, Li Zhenhui, Cui Yanfen, Liu Zaiyi

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.

Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.

出版信息

Heliyon. 2024 May 10;10(10):e30779. doi: 10.1016/j.heliyon.2024.e30779. eCollection 2024 May 30.

Abstract

BACKGROUND AND OBJECTIVE

Spatial interaction between tumor-infiltrating lymphocytes (TILs) and tumor cells is valuable in predicting the effectiveness of immune response and prognosis amongst patients with lung adenocarcinoma (LUAD). Recent evidence suggests that the spatial distance between tumor cells and lymphocytes also influences the immune responses, but the distance analysis based on Hematoxylin and Eosin (H&E) -stained whole-slide images (WSIs) remains insufficient. To address this issue, we aim to explore the relationship between distance and prognosis prediction of patients with LUAD in this study.

METHODS

We recruited patients with resectable LUAD from three independent cohorts in this multi-center study. We proposed a simple but effective deep learning-driven workflow to automatically segment different cell types in the tumor region using the HoVer-Net model, and quantified the spatial distance (DIST) between tumor cells and lymphocytes based on H&E-stained WSIs. The association of DIST with disease-free survival (DFS) was explored in the discovery set (D1, n = 276) and the two validation sets (V1, n = 139; V2, n = 115).

RESULTS

In multivariable analysis, the low DIST group was associated with significantly better DFS in the discovery set (D1, HR, 0.61; 95 % CI, 0.40-0.94; p = 0.027) and the two validation sets (V1, HR, 0.54; 95 % CI, 0.32-0.91; p = 0.022; V2, HR, 0.44; 95 % CI, 0.24-0.81; p = 0.009). By integrating the DIST with clinicopathological factors, the integrated model (full model) had better discrimination for DFS in the discovery set (C-index, D1, 0.745 vs. 0.723) and the two validation sets (V1, 0.621 vs. 0.596; V2, 0.671 vs. 0.650). Furthermore, the computerized DIST was associated with immune phenotypes such as immune-desert and inflamed phenotypes.

CONCLUSIONS

The integration of DIST with clinicopathological factors could improve the stratification performance of patients with resectable LUAD, was beneficial for the prognosis prediction of LUAD patients, and was also expected to assist physicians in individualized treatment.

摘要

背景与目的

肿瘤浸润淋巴细胞(TILs)与肿瘤细胞之间的空间相互作用对于预测肺腺癌(LUAD)患者的免疫反应效果和预后具有重要价值。最近的证据表明,肿瘤细胞与淋巴细胞之间的空间距离也会影响免疫反应,但基于苏木精和伊红(H&E)染色的全切片图像(WSIs)进行的距离分析仍显不足。为解决这一问题,我们旨在本研究中探索LUAD患者距离与预后预测之间的关系。

方法

在这项多中心研究中,我们从三个独立队列招募了可切除LUAD患者。我们提出了一种简单但有效的深度学习驱动工作流程,使用HoVer-Net模型自动分割肿瘤区域中的不同细胞类型,并基于H&E染色WSIs量化肿瘤细胞与淋巴细胞之间的空间距离(DIST)。在发现集(D1,n = 276)和两个验证集(V1,n = 139;V2,n = 115)中探索DIST与无病生存期(DFS)的关联。

结果

在多变量分析中,低DIST组在发现集(D1,HR,0.61;95%CI,0.40 - 0.94;p = 0.027)和两个验证集(V1中,HR,0.54;95%CI:0.32 - 0.91;p = 0.022;V2中HR,0.44;95%CI,0.24 - 0.81;p = 0.009)中与显著更好的DFS相关。通过将DIST与临床病理因素相结合,整合模型(完整模型)在发现集(C指数,D1,0.745对0.723)和两个验证集(V1,0.621对0.596;V2中,0.671对第0.650)中对DFS具有更好的区分度判别度。此外,计算机化的DIST与免疫表型如免疫沙漠和炎症表型相关联。

结论

DIST与临床病理因素的整合可以提高可切除LUAD患者的分层性能性能表现对LUAD患者的预后预测有益,并且有望协助医生进行个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/11109847/2b0945fe64c9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验