Suppr超能文献

化学生物组学鉴定出依赖状态和蛋白形式选择性的胱天蛋白酶-2 抑制剂。

Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors.

机构信息

Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States.

Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States.

出版信息

J Am Chem Soc. 2024 Jun 5;146(22):14972-14988. doi: 10.1021/jacs.3c12240. Epub 2024 May 24.

Abstract

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.

摘要

半胱天冬酶是一类高度保守的半胱氨酸天冬氨酸蛋白酶家族,其在调控细胞凋亡、炎症、细胞分化和增殖方面发挥着重要作用。除了遗传方法外,小分子探针已成为调节半胱天冬酶活性的有用工具。然而,由于所有 12 个人类半胱天冬酶的序列和结构高度同源,实现选择性仍然是半胱天冬酶定向小分子抑制剂开发的核心挑战。在这里,我们首先使用基于质谱的化学蛋白质组学方法,鉴定出半胱天冬酶-2 特有的一个高度反应性的非催化半胱氨酸。通过结合基于凝胶的活性基蛋白谱(ABPP)和(TEV)蛋白酶激活测定法,我们随后鉴定出与该半胱氨酸优先反应的共价先导化合物,并完全阻断半胱天冬酶-2 的活性。抑制活性仅限于单体半胱天冬酶-2 的酶原或前体形式。聚焦的类似物合成结合化学蛋白质组学靶标结合分析在细胞裂解物和细胞中的应用,产生了既对半胱天冬酶-2 具有反应性又对半胱天冬酶-2 具有选择性的先导化合物,以及结构匹配的无活性对照物。这些聚焦的工具化合物的应用对半胱天冬酶-2 的酶原和部分加工(p32)形式的功能进行了分层,为支持半胱天冬酶-2 介导的 DNA 损伤反应主要由酶的部分加工 p32 形式驱动提供了证据。更广泛地说,我们的研究强调了开发针对非保守和非催化半胱氨酸残基的蛋白选择性半胱天冬酶抑制剂的未来机会。

相似文献

1
Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors.
J Am Chem Soc. 2024 Jun 5;146(22):14972-14988. doi: 10.1021/jacs.3c12240. Epub 2024 May 24.
2
Chemoproteomics identifies proteoform-selective caspase-2 inhibitors.
bioRxiv. 2023 Oct 26:2023.10.25.563785. doi: 10.1101/2023.10.25.563785.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
5
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
10

引用本文的文献

1
Complexoform-restricted covalent TRMT112 ligands that allosterically agonize METTL5.
bioRxiv. 2025 May 25:2025.05.25.655995. doi: 10.1101/2025.05.25.655995.
2
An activation-based high throughput screen identifies caspase-10 inhibitors.
RSC Chem Biol. 2025 Feb 4;6(4):604-617. doi: 10.1039/d5cb00017c. eCollection 2025 Apr 2.
3
One-Pot Construction of NHS-Activated Magnetic Particles for Chemoselective Capture of Carboxyl Metabolites.
Adv Sci (Weinh). 2025 Apr;12(13):e2413830. doi: 10.1002/advs.202413830. Epub 2025 Feb 11.
4
Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors.
SLAS Discov. 2024 Dec;29(8):100198. doi: 10.1016/j.slasd.2024.100198. Epub 2024 Nov 30.
5
Chemoproteogenomic stratification of the missense variant cysteinome.
Nat Commun. 2024 Oct 28;15(1):9284. doi: 10.1038/s41467-024-53520-x.
6
Chem(Pro)2: the atlas of chemoproteomic probes labelling human proteins.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1651-D1662. doi: 10.1093/nar/gkae943.
7
Chemoproteomics of Marine Natural Product Naamidine J Unveils CSE1L as a Therapeutic Target in Acute Lung Injury.
J Am Chem Soc. 2024 Oct 16;146(41):28384-28397. doi: 10.1021/jacs.4c09695. Epub 2024 Sep 26.
8
Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics.
Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x.

本文引用的文献

1
Redirecting the pioneering function of FOXA1 with covalent small molecules.
Mol Cell. 2024 Nov 7;84(21):4125-4141.e10. doi: 10.1016/j.molcel.2024.09.024. Epub 2024 Oct 15.
2
HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest.
mBio. 2024 Oct 16;15(10):e0024024. doi: 10.1128/mbio.00240-24. Epub 2024 Sep 13.
3
Analysis and Visualization of Quantitative Proteomics Data Using FragPipe-Analyst.
J Proteome Res. 2024 Oct 4;23(10):4303-4315. doi: 10.1021/acs.jproteome.4c00294. Epub 2024 Sep 10.
5
An electrophilic fragment screening for the development of small molecules targeting caspase-2.
Eur J Med Chem. 2023 Nov 5;259:115632. doi: 10.1016/j.ejmech.2023.115632. Epub 2023 Jul 11.
6
Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes.
J Med Chem. 2023 Jul 27;66(14):9297-9312. doi: 10.1021/acs.jmedchem.3c00550. Epub 2023 Jul 5.
7
Activity-based protein profiling - finding general solutions to specific problems.
Isr J Chem. 2023 Mar;63(3-4). doi: 10.1002/ijch.202300029. Epub 2023 Mar 3.
8
CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28.
9
Engaging a Non-catalytic Cysteine Residue Drives Potent and Selective Inhibition of Caspase-6.
J Am Chem Soc. 2023 May 10;145(18):10015-10021. doi: 10.1021/jacs.2c12240. Epub 2023 Apr 27.
10
Genuine selective caspase-2 inhibition with new irreversible small peptidomimetics.
Cell Death Dis. 2022 Nov 15;13(11):959. doi: 10.1038/s41419-022-05396-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验