Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States.
J Am Chem Soc. 2024 Jun 5;146(22):14972-14988. doi: 10.1021/jacs.3c12240. Epub 2024 May 24.
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
半胱天冬酶是一类高度保守的半胱氨酸天冬氨酸蛋白酶家族,其在调控细胞凋亡、炎症、细胞分化和增殖方面发挥着重要作用。除了遗传方法外,小分子探针已成为调节半胱天冬酶活性的有用工具。然而,由于所有 12 个人类半胱天冬酶的序列和结构高度同源,实现选择性仍然是半胱天冬酶定向小分子抑制剂开发的核心挑战。在这里,我们首先使用基于质谱的化学蛋白质组学方法,鉴定出半胱天冬酶-2 特有的一个高度反应性的非催化半胱氨酸。通过结合基于凝胶的活性基蛋白谱(ABPP)和(TEV)蛋白酶激活测定法,我们随后鉴定出与该半胱氨酸优先反应的共价先导化合物,并完全阻断半胱天冬酶-2 的活性。抑制活性仅限于单体半胱天冬酶-2 的酶原或前体形式。聚焦的类似物合成结合化学蛋白质组学靶标结合分析在细胞裂解物和细胞中的应用,产生了既对半胱天冬酶-2 具有反应性又对半胱天冬酶-2 具有选择性的先导化合物,以及结构匹配的无活性对照物。这些聚焦的工具化合物的应用对半胱天冬酶-2 的酶原和部分加工(p32)形式的功能进行了分层,为支持半胱天冬酶-2 介导的 DNA 损伤反应主要由酶的部分加工 p32 形式驱动提供了证据。更广泛地说,我们的研究强调了开发针对非保守和非催化半胱氨酸残基的蛋白选择性半胱天冬酶抑制剂的未来机会。