Suppr超能文献

基于结构的 CFTR 增强剂和抑制剂的发现。

Structure-based discovery of CFTR potentiators and inhibitors.

机构信息

Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Cell. 2024 Jul 11;187(14):3712-3725.e34. doi: 10.1016/j.cell.2024.04.046. Epub 2024 May 28.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.

摘要

囊性纤维化跨膜电导调节因子(CFTR)是一种重要的离子通道,其功能丧失会导致囊性纤维化,而其过度激活则会导致分泌性腹泻。能够改善 CFTR 折叠(矫正剂)或功能(增强剂)的小分子在临床上已经可用。然而,唯一的增强剂 ivacaftor 的药代动力学并不理想,抑制剂尚未在临床上开发出来。在这里,我们将分子对接、电生理学、冷冻电镜和药物化学结合起来,以鉴定 CFTR 调节剂。我们将大约 1.55 亿个分子对接进入 CFTR 的增强剂结合位点,合成了 53 个测试配体,并使用基于结构的优化来鉴定候选调节剂。这种方法发现了具有中纳摩尔效力的增强剂,以及与相同别构位点结合的抑制剂。这些分子为开发更有效的囊性纤维化和分泌性腹泻药物提供了潜在的先导化合物,证明了大规模对接用于离子通道药物发现的可行性。

相似文献

1
Structure-based discovery of CFTR potentiators and inhibitors.
Cell. 2024 Jul 11;187(14):3712-3725.e34. doi: 10.1016/j.cell.2024.04.046. Epub 2024 May 28.
2
Structure-based discovery of CFTR potentiators and inhibitors.
bioRxiv. 2024 Mar 11:2023.09.09.557002. doi: 10.1101/2023.09.09.557002.
3
Structural identification of a hotspot on CFTR for potentiation.
Science. 2019 Jun 21;364(6446):1184-1188. doi: 10.1126/science.aaw7611.
4
F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
Expert Opin Ther Pat. 2015;25(9):991-1002. doi: 10.1517/13543776.2015.1045878. Epub 2015 May 15.
5
Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2015 Mar 26(3):CD009841. doi: 10.1002/14651858.CD009841.pub2.
6
Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.
Sci Transl Med. 2014 Jul 23;6(246):246ra96. doi: 10.1126/scitranslmed.3008680.
8
Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
Ann Pharmacother. 2012 Jul-Aug;46(7-8):1065-75. doi: 10.1345/aph.1R076. Epub 2012 Jun 26.
10
Cystic fibrosis transmembrane regulator correctors and potentiators.
Cold Spring Harb Perspect Med. 2013 Jul 1;3(7):a009761. doi: 10.1101/cshperspect.a009761.

引用本文的文献

1
The solute carrier superfamily interactome.
Mol Syst Biol. 2025 May 12. doi: 10.1038/s44320-025-00109-1.
2
AI-based discovery and cryoEM structural elucidation of a K channel pharmacochaperone.
Elife. 2025 Mar 26;13:RP103159. doi: 10.7554/eLife.103159.
4
Virtual library docking for cannabinoid-1 receptor agonists with reduced side effects.
Nat Commun. 2025 Mar 6;16(1):2237. doi: 10.1038/s41467-025-57136-7.
6
CFTR as a therapeutic target for severe lung infection.
Am J Physiol Lung Cell Mol Physiol. 2025 Feb 1;328(2):L229-L238. doi: 10.1152/ajplung.00289.2024. Epub 2025 Jan 8.
7
AI-Based Discovery and CryoEM Structural Elucidation of a K Channel Pharmacochaperone.
bioRxiv. 2025 Feb 7:2024.09.05.611490. doi: 10.1101/2024.09.05.611490.

本文引用的文献

1
Structural basis for CFTR inhibition by CFTR-172.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2316675121. doi: 10.1073/pnas.2316675121. Epub 2024 Feb 29.
2
Docking for EP4R antagonists active against inflammatory pain.
Nat Commun. 2023 Dec 6;14(1):8067. doi: 10.1038/s41467-023-43506-6.
3
Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators.
Science. 2022 Oct 21;378(6617):284-290. doi: 10.1126/science.ade2216. Epub 2022 Oct 20.
4
Structure-based discovery of nonopioid analgesics acting through the α-adrenergic receptor.
Science. 2022 Sep 30;377(6614):eabn7065. doi: 10.1126/science.abn7065.
5
Bespoke library docking for 5-HT receptor agonists with antidepressant activity.
Nature. 2022 Oct;610(7932):582-591. doi: 10.1038/s41586-022-05258-z. Epub 2022 Sep 28.
6
Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
Nature. 2022 Jan;601(7893):452-459. doi: 10.1038/s41586-021-04220-9. Epub 2021 Dec 15.
7
Structures of the σ receptor enable docking for bioactive ligand discovery.
Nature. 2021 Dec;600(7890):759-764. doi: 10.1038/s41586-021-04175-x. Epub 2021 Dec 8.
9
A practical guide to large-scale docking.
Nat Protoc. 2021 Oct;16(10):4799-4832. doi: 10.1038/s41596-021-00597-z. Epub 2021 Sep 24.
10
Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR.
J Cyst Fibros. 2021 Sep;20(5):895-898. doi: 10.1016/j.jcf.2021.03.011. Epub 2021 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验