Suppr超能文献

肾脏病医学与计算机视觉:文献计量分析。

Kidney medicine meets computer vision: a bibliometric analysis.

机构信息

Department of Nephrology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

School of Computer Science, Sichuan University, Chengdu, 610065, Sichuan, China.

出版信息

Int Urol Nephrol. 2024 Oct;56(10):3361-3380. doi: 10.1007/s11255-024-04082-w. Epub 2024 May 30.

Abstract

BACKGROUND AND OBJECTIVE

Rapid advances in computer vision (CV) have the potential to facilitate the examination, diagnosis, and treatment of diseases of the kidney. The bibliometric study aims to explore the research landscape and evolving research focus of the application of CV in kidney medicine research.

METHODS

The Web of Science Core Collection was utilized to identify publications related to the research or applications of CV technology in the field of kidney medicine from January 1, 1900, to December 31, 2022. We analyzed emerging research trends, highly influential publications and journals, prolific researchers, countries/regions, research institutions, co-authorship networks, and co-occurrence networks. Bibliographic information was analyzed and visualized using Python, Matplotlib, Seaborn, HistCite, and Vosviewer.

RESULTS

There was an increasing trend in the number of publications on CV-based kidney medicine research. These publications mainly focused on medical image processing, surgical procedures, medical image analysis/diagnosis, as well as the application and innovation of CV technology in medical imaging. The United States is currently the leading country in terms of the quantities of published articles and international collaborations, followed by China. Deep learning-based segmentation and machine learning-based texture analysis are the most commonly used techniques in this field. Regarding research hotspot trends, CV algorithms are shifting toward artificial intelligence, and research objects are expanding to encompass a wider range of kidney-related objects, with data dimensions used in research transitioning from 2D to 3D while simultaneously incorporating more diverse data modalities.

CONCLUSION

The present study provides a scientometric overview of the current progress in the research and application of CV technology in kidney medicine research. Through the use of bibliometric analysis and network visualization, we elucidate emerging trends, key sources, leading institutions, and popular topics. Our findings and analysis are expected to provide valuable insights for future research on the use of CV in kidney medicine research.

摘要

背景与目的

计算机视觉(CV)的快速发展有可能促进肾脏疾病的检查、诊断和治疗。本计量学研究旨在探讨 CV 在肾脏医学研究中的应用的研究现状和不断发展的研究重点。

方法

利用 Web of Science 核心合集,从 1900 年 1 月 1 日至 2022 年 12 月 31 日,确定了与 CV 技术在肾脏医学领域的研究或应用相关的出版物。我们分析了新兴的研究趋势、高影响力的出版物和期刊、多产的研究人员、国家/地区、研究机构、合作网络和共现网络。使用 Python、Matplotlib、Seaborn、HistCite 和 Vosviewer 分析和可视化书目信息。

结果

基于 CV 的肾脏医学研究的出版物数量呈增长趋势。这些出版物主要集中在医学图像处理、手术程序、医学图像分析/诊断以及 CV 技术在医学成像中的应用和创新上。美国目前在发表文章数量和国际合作方面处于领先地位,其次是中国。基于深度学习的分割和基于机器学习的纹理分析是该领域最常用的技术。关于研究热点趋势,CV 算法正在向人工智能转移,研究对象正在扩大到包含更广泛的肾脏相关对象,研究中使用的数据维度从 2D 过渡到 3D,同时结合更多样的数据模式。

结论

本研究提供了 CV 技术在肾脏医学研究中的研究和应用的当前进展的科学计量学概述。通过使用文献计量分析和网络可视化,我们阐明了新兴趋势、关键来源、领先机构和热门话题。我们的研究结果和分析有望为未来 CV 在肾脏医学研究中的应用研究提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验