Suppr超能文献

一种用于对阿片类物质使用障碍不同风险水平患者进行分类的机器学习应用:基于临床医生的验证研究。

A Machine Learning Application to Classify Patients at Differing Levels of Risk of Opioid Use Disorder: Clinician-Based Validation Study.

作者信息

Eguale Tewodros, Bastardot François, Song Wenyu, Motta-Calderon Daniel, Elsobky Yasmin, Rui Angela, Marceau Marlika, Davis Clark, Ganesan Sandya, Alsubai Ava, Matthews Michele, Volk Lynn A, Bates David W, Rozenblum Ronen

机构信息

School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States.

Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, United States.

出版信息

JMIR Med Inform. 2024 Jun 4;12:e53625. doi: 10.2196/53625.

Abstract

BACKGROUND

Despite restrictive opioid management guidelines, opioid use disorder (OUD) remains a major public health concern. Machine learning (ML) offers a promising avenue for identifying and alerting clinicians about OUD, thus supporting better clinical decision-making regarding treatment.

OBJECTIVE

This study aimed to assess the clinical validity of an ML application designed to identify and alert clinicians of different levels of OUD risk by comparing it to a structured review of medical records by clinicians.

METHODS

The ML application generated OUD risk alerts on outpatient data for 649,504 patients from 2 medical centers between 2010 and 2013. A random sample of 60 patients was selected from 3 OUD risk level categories (n=180). An OUD risk classification scheme and standardized data extraction tool were developed to evaluate the validity of the alerts. Clinicians independently conducted a systematic and structured review of medical records and reached a consensus on a patient's OUD risk level, which was then compared to the ML application's risk assignments.

RESULTS

A total of 78,587 patients without cancer with at least 1 opioid prescription were identified as follows: not high risk (n=50,405, 64.1%), high risk (n=16,636, 21.2%), and suspected OUD or OUD (n=11,546, 14.7%). The sample of 180 patients was representative of the total population in terms of age, sex, and race. The interrater reliability between the ML application and clinicians had a weighted kappa coefficient of 0.62 (95% CI 0.53-0.71), indicating good agreement. Combining the high risk and suspected OUD or OUD categories and using the review of medical records as a gold standard, the ML application had a corrected sensitivity of 56.6% (95% CI 48.7%-64.5%) and a corrected specificity of 94.2% (95% CI 90.3%-98.1%). The positive and negative predictive values were 93.3% (95% CI 88.2%-96.3%) and 60.0% (95% CI 50.4%-68.9%), respectively. Key themes for disagreements between the ML application and clinician reviews were identified.

CONCLUSIONS

A systematic comparison was conducted between an ML application and clinicians for identifying OUD risk. The ML application generated clinically valid and useful alerts about patients' different OUD risk levels. ML applications hold promise for identifying patients at differing levels of OUD risk and will likely complement traditional rule-based approaches to generating alerts about opioid safety issues.

摘要

背景

尽管有严格的阿片类药物管理指南,但阿片类药物使用障碍(OUD)仍然是一个主要的公共卫生问题。机器学习(ML)为识别和提醒临床医生注意OUD提供了一条有前景的途径,从而支持在治疗方面做出更好的临床决策。

目的

本研究旨在通过将一个旨在识别并提醒临床医生注意不同OUD风险水平的ML应用程序与临床医生对病历的结构化审查进行比较,来评估该ML应用程序的临床有效性。

方法

该ML应用程序针对2010年至2013年期间来自2个医疗中心的649,504名患者的门诊数据生成了OUD风险警报。从3个OUD风险水平类别中随机抽取了60名患者(n = 180)。开发了一种OUD风险分类方案和标准化数据提取工具来评估警报的有效性。临床医生独立对病历进行系统和结构化审查,并就患者的OUD风险水平达成共识,然后将其与ML应用程序的风险分配进行比较。

结果

总共识别出78,587名无癌症且至少有1张阿片类药物处方的患者,具体如下:低风险(n = 50,405,64.1%)、高风险(n = 16,636,21.2%)以及疑似OUD或OUD(n = 11,546,14.7%)。180名患者的样本在年龄、性别和种族方面代表了总体人群。ML应用程序与临床医生之间的评分者间信度加权kappa系数为0.62(95%CI 0.53 - 0.71),表明一致性良好。将高风险和疑似OUD或OUD类别合并,并将病历审查作为金标准,ML应用程序的校正敏感度为56.6%(95%CI 48.7% - 64.5%),校正特异度为94.2%(95%CI 90.3% - 98.1%)。阳性预测值和阴性预测值分别为93.3%(95%CI 88.2% - 96.3%)和60.0%(95%CI 50.4% - 68.9%)。确定了ML应用程序与临床医生审查之间存在分歧的关键主题。

结论

对一个用于识别OUD风险的ML应用程序和临床医生进行了系统比较。该ML应用程序生成了关于患者不同OUD风险水平的具有临床有效性和实用性的警报。ML应用程序有望识别不同OUD风险水平的患者,并可能补充传统的基于规则的方法来生成关于阿片类药物安全问题的警报。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验