Suppr超能文献

利用深度学习从苏木精和伊红染色切片预测非小细胞肺癌中的表皮生长因子受体突变亚型

Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning.

作者信息

Zhang Wanqiu, Wang Wei, Xu Yao, Wu Kun, Shi Jun, Li Ming, Feng Zhengzhong, Liu Yinhua, Zheng Yushan, Wu Haibo

机构信息

Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Wuhu, China.

出版信息

Lab Invest. 2024 Aug;104(8):102094. doi: 10.1016/j.labinv.2024.102094. Epub 2024 Jun 11.

Abstract

Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In this study, an artificial intelligence-powered deep learning framework was developed for the weakly supervised prediction of EGFR mutations in non-small cell lung cancer from hematoxylin and eosin-stained histopathology whole-slide images. The study cohort was partitioned into training and validation subsets. Foreground regions containing tumor tissue were extracted from whole-slide images. A convolutional neural network employing a contrastive learning paradigm was implemented to extract patch-level morphologic features. These features were aggregated using a vision transformer-based model to predict EGFR mutation status and classify patient cases. The established prediction model was validated on unseen data sets. In internal validation with a cohort from the University of Science and Technology of China (n = 172), the model achieved patient-level areas under the receiver-operating characteristic curve (AUCs) of 0.927 and 0.907, sensitivities of 81.6% and 83.3%, and specificities of 93.0% and 92.3%, for surgical resection and biopsy specimens, respectively, in EGFR mutation subtype prediction. External validation with cohorts from the Second Affiliated Hospital of Anhui Medical University and the First Affiliated Hospital of Wannan Medical College (n = 193) yielded patient-level AUCs of 0.849 and 0.867, sensitivities of 79.2% and 80.7%, and specificities of 91.7% and 90.7% for surgical and biopsy specimens, respectively. Further validation with The Cancer Genome Atlas data set (n = 81) showed an AUC of 0.861, a sensitivity of 84.6%, and a specificity of 90.5%. Deep learning solutions demonstrate potential advantages for automated, noninvasive, fast, cost-effective, and accurate inference of EGFR alterations from histomorphology. Integration of such artificial intelligence frameworks into routine digital pathology workflows could augment existing molecular testing pipelines.

摘要

准确评估表皮生长因子受体(EGFR)突变状态和亚型对于非小细胞肺癌患者的治疗至关重要。检测EGFR突变的传统分子检测方法存在局限性。在本研究中,开发了一种基于人工智能的深度学习框架,用于从苏木精和伊红染色的组织病理学全切片图像中对非小细胞肺癌的EGFR突变进行弱监督预测。研究队列被划分为训练子集和验证子集。从全切片图像中提取包含肿瘤组织的前景区域。采用对比学习范式的卷积神经网络被用于提取切片级形态学特征。这些特征使用基于视觉Transformer的模型进行聚合,以预测EGFR突变状态并对患者病例进行分类。所建立的预测模型在未见过的数据集上进行验证。在对来自中国科学技术大学的队列(n = 172)进行内部验证时,该模型在EGFR突变亚型预测中,对于手术切除标本和活检标本,患者水平的受试者操作特征曲线下面积(AUC)分别为0.927和0.907,敏感性分别为81.6%和83.3%,特异性分别为93.0%和92.3%。对来自安徽医科大学第二附属医院和皖南医学院第一附属医院的队列(n = 193)进行外部验证时,对于手术标本和活检标本,患者水平的AUC分别为0.849和0.867,敏感性分别为79.2%和80.7%,特异性分别为91.7%和90.7%。使用癌症基因组图谱数据集(n = 81)进行的进一步验证显示AUC为0.861,敏感性为84.6%,特异性为90.5%。深度学习解决方案在从组织形态学自动、无创、快速、经济高效且准确地推断EGFR改变方面显示出潜在优势。将这种人工智能框架整合到常规数字病理学工作流程中可以增强现有的分子检测流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验