Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China.
Chemosphere. 2024 Aug;362:142629. doi: 10.1016/j.chemosphere.2024.142629. Epub 2024 Jun 15.
The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.
聚苯乙烯(PS)纳米和微塑料(NMPs)以及三氯生(TCS)作为环境污染物的出现引起了人们对它们对生物联合毒性的关注,但由于它们的相互作用和潜在的分子机制而产生的复杂毒性对我们来说仍然不清楚。在这项研究中,我们通过剂量依赖性酵母功能基因组学分析全面检测了 PS-NMPs 和 TCS 的联合毒性。首先,我们的研究结果表明,PS-NMPs 和 TCS 的联合暴露会产生协同毒性,其毒性取决于 PS-NMPs 的大小。其次,我们发现 TCS 的暴露,无论是单独暴露还是与 PS-NMPs 联合暴露,都会影响脂质生物合成过程和 ATP 输出途径,而 TCS 和 PS-NMPs 联合暴露所引发的独特应答基因则显著富集在线粒体翻译、核糖体小亚基组装和 tRNA 摆动尿嘧啶修饰。第三,我们的研究结果表明,途径水平的起始点(POD)与 IC 呈正相关,并且 POD 比顶端毒性终点更能敏感地预测毒性。更重要的是,我们的研究结果表明,PS-NMPs 以剂量依赖的方式的联合暴露不仅减轻了 TCS 对甘油磷脂代谢的有害影响,而且加剧了其对氧化磷酸化的负面影响。总的来说,我们的研究不仅为控制 PS-NMPs 和 TCS 联合毒性的复杂分子机制提供了新的见解,还证实了剂量依赖性功能基因组学方法在阐明污染物联合毒性的分子机制方面的有效性。