Suppr超能文献

揭开病毒糖萼的神秘面纱:病毒如何利用糖免疫检查点?

Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints?

机构信息

LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.

LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.

出版信息

Adv Virus Res. 2024;119:63-110. doi: 10.1016/bs.aivir.2024.03.001. Epub 2024 Apr 8.

Abstract

The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.

摘要

细胞表面和包膜病毒表面都覆盖着碳水化合物,这些碳水化合物在感染和免疫中发挥着多种作用。生命的所有王国中的生物都利用各种各样的单糖亚基、糖苷键和分支模式来在聚糖中编码信息。因此,糖基化酶和糖结合蛋白在细胞和生物体内生物学中发挥着重要作用,从内质网中糖蛋白的质量控制到淋巴细胞的迁移、凝血、炎症和组织稳态。毫不奇怪,参与生成和识别寡糖模式的基因是进化冲突的游乐场,这些冲突在种间相互作用中比比皆是,植物凝集素就是一个例子,它作为毒素发挥作用。在脊椎动物中,带有称为唾液酸的九碳酸性糖的聚糖是免疫反应的关键调节剂。各种细菌和真菌病原体用模仿宿主或从宿主中窃取的唾液酸来装饰它们的细胞。然而,病毒如何利用宿主的糖基化酶来破坏免疫反应仍研究甚少。在这里,我们回顾了一些与唾液酸结合免疫球蛋白样凝集素(Siglecs)相互作用的病毒的例子,Siglecs 是一类免疫细胞受体,可调节 Toll 样受体信号并控制糖免疫检查点,同时突出了值得研究的知识空白。阐明病毒如何利用糖依赖性检查点的努力可能转化为新的临床治疗方法,这些方法通过去除或掩盖免疫抑制性唾液酸聚糖,或通过抑制诱导其生物合成的病毒基因产物,来揭示病毒抗原和受感染细胞的表面。这些方法可能有潜力释放免疫系统,清除长期难以治疗的慢性病毒感染。

相似文献

1
Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints?
Adv Virus Res. 2024;119:63-110. doi: 10.1016/bs.aivir.2024.03.001. Epub 2024 Apr 8.
2
Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment.
Trends Immunol. 2020 Apr;41(4):274-285. doi: 10.1016/j.it.2020.02.001. Epub 2020 Mar 2.
4
Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins.
Neuroscience. 2014 Sep 5;275:113-24. doi: 10.1016/j.neuroscience.2014.05.061. Epub 2014 Jun 9.
5
Siglec Ligands.
Cells. 2021 May 20;10(5):1260. doi: 10.3390/cells10051260.
6
Roles for Siglec-glycan interactions in regulating immune cells.
Semin Immunol. 2025 Mar;77:101925. doi: 10.1016/j.smim.2024.101925. Epub 2024 Dec 19.
7
Siglec Signaling in the Tumor Microenvironment.
Front Immunol. 2021 Dec 13;12:790317. doi: 10.3389/fimmu.2021.790317. eCollection 2021.
8
Advances in understanding and exploiting Siglec-glycan interactions.
Curr Opin Chem Biol. 2024 Jun;80:102454. doi: 10.1016/j.cbpa.2024.102454. Epub 2024 Apr 16.
9
Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections.
EBioMedicine. 2022 Dec;86:104354. doi: 10.1016/j.ebiom.2022.104354. Epub 2022 Nov 10.

引用本文的文献

1
A human lectin array for characterizing host-pathogen interactions.
J Biol Chem. 2024 Nov;300(11):107869. doi: 10.1016/j.jbc.2024.107869. Epub 2024 Oct 9.

本文引用的文献

1
Bringing enzymes to the proximity party.
RSC Chem Biol. 2023 Sep 29;4(12):986-1002. doi: 10.1039/d3cb00084b. eCollection 2023 Nov 29.
2
Direct observation of glycans bonded to proteins and lipids at the single-molecule level.
Science. 2023 Oct 13;382(6667):219-223. doi: 10.1126/science.adh3856. Epub 2023 Oct 12.
3
Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses.
Nat Biomed Eng. 2023 Sep;7(9):1142-1155. doi: 10.1038/s41551-023-01086-2. Epub 2023 Sep 7.
4
Deletion of the non-adjacent genes and impairs human cytomegalovirus-mediated TNF receptor 2 surface upregulation.
Front Immunol. 2023 Aug 3;14:1170300. doi: 10.3389/fimmu.2023.1170300. eCollection 2023.
5
ADAM17 targeting by human cytomegalovirus remodels the cell surface proteome to simultaneously regulate multiple immune pathways.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303155120. doi: 10.1073/pnas.2303155120. Epub 2023 Aug 10.
6
Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer.
Nat Chem. 2023 Nov;15(11):1636-1647. doi: 10.1038/s41557-023-01280-4. Epub 2023 Jul 24.
8
The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases.
Glycoconj J. 2023 Aug;40(4):473-492. doi: 10.1007/s10719-023-10123-w. Epub 2023 May 29.
9
Evolutionary constraint and innovation across hundreds of placental mammals.
Science. 2023 Apr 28;380(6643):eabn3943. doi: 10.1126/science.abn3943.
10
Intestinal Tropism of a Betacoronavirus () in Nathusius's Pipistrelle Bat (), Its Natural Host.
J Virol. 2023 Mar 30;97(3):e0009923. doi: 10.1128/jvi.00099-23. Epub 2023 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验