Suppr超能文献

远离平衡态的有机合成:由激发态电子转移实现的反热力学转变

Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.

作者信息

Lin Angela, Lee Sumin, Knowles Robert R

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.

Abstract

ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as HO and CO into higher energy products in the form of carbohydrates and O. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic -centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C β-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.

摘要

综述

长期以来,化学家一直受到生物光合作用的启发。在生物光合作用中,一系列激发态电子转移(ET)事件促使低能量起始原料(如H₂O和CO₂)转化为以碳水化合物和O₂形式存在的高能量产物。虽然这种利用光驱动电荷转移来热力学“上坡”驱动催化反应的模式已被广泛应用于小分子活化、分子机器、光开关和太阳能燃料化学,但它在有机合成中的应用尚未得到系统开发。然而,这些方法的潜在益处显著,既能够实现使用传统热化学难以达成的转化,又能够进入由激发态机制独特实现的独特选择性体系。在本综述中,我们展示了我们团队的工作,突出了可见光光氧化还原催化将有用的有机转化从其平衡位置驱动开来的能力,解决了一些长期存在的合成挑战。

我们首先讨论激发态电子转移如何实现了用烷基胺对未活化烯烃进行催化反马氏氢胺化的首批通用方法。在这些反应中,激发态铱(III)光催化剂将仲胺底物可逆地氧化为其相应的铵自由基阳离子(ARC)。这些以亲电中心为自由基随后可与烯烃反应,以完全的反马氏区域选择性提供有价值的叔胺产物。值得注意的是,其中一些产物在热力学上比其相应的胺和烯烃起始原料更不稳定。接下来,我们提出了一种策略,用于在由激发态质子耦合电子转移(PCET)对醇O-H键进行均裂活化介导的各种脂肪醇内进行光驱动的C-C键裂解。生成的烷氧基自由基中间体随后进行C-Cβ-断裂,最终提供能量通常高于其环状醇前体的异构线性羰基产物。还展示了这种化学方法在光驱动木质素生物质、商用苯氧基树脂、羟基化聚烯烃衍生物和热固性聚合物解聚中的应用。然后,我们描述了一种通过协同光氧化还原和铬(II)催化对高度取代烯烃进行反热力学位置异构化的方法。在这项工作中,生成能够进行高度区域选择性质子脱金属化的烯丙基铬(III)物种,使得能够获得取代较少且热力学上较不稳定的位置异构体。该反应中的产物选择性由不同取代的烯烃异构体之间氧化电位的巨大差异决定。最后,我们讨论了与米勒团队合作开发的光驱动消旋化反应,其中外消旋脲底物在铱(III)发色团、手性布朗斯特碱和手性肽硫醇存在下于可见光照射时发生自发的光学富集。通过顺序和协同的质子转移(PT)和氢原子转移(HAT)步骤实现了优异的对映选择性水平。综上所述,这些例子突出了激发态电子转移事件能够在光子是唯一化学计量试剂的广泛催化、氧化还原中性转化中实现非平衡产物分布的能力。

相似文献

1
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.
2
Light-Driven C(sp)-C(sp) Bond Functionalizations Enabled by the PCET Activation of Alcohol O-H Bonds.
Acc Chem Res. 2025 Jul 1;58(13):2061-2071. doi: 10.1021/acs.accounts.5c00246. Epub 2025 Jun 13.
3
Hydrogen Atom Transfer Promoted by Carbon-Centered Biradicals via Energy Transfer Catalysis.
Acc Chem Res. 2025 Jul 1;58(13):2028-2045. doi: 10.1021/acs.accounts.5c00228. Epub 2025 Jun 9.
4
Kinetics, Thermodynamics, and Emergence in Stereoediting Reactions.
Acc Chem Res. 2025 Jun 26. doi: 10.1021/acs.accounts.5c00299.
5
The Role of Anions in Guanidinium-Catalyzed Chiral Cation Ion Pair Catalysis.
Acc Chem Res. 2025 Jun 30. doi: 10.1021/acs.accounts.5c00283.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Carbon dioxide detection for diagnosis of inadvertent respiratory tract placement of enterogastric tubes in children.
Cochrane Database Syst Rev. 2025 Feb 19;2(2):CD011196. doi: 10.1002/14651858.CD011196.pub2.

引用本文的文献

1
Light-Mediated Binaphthyl Enhanced [2 + 2] Dearomatization of Heterocycles via an Energy-Transfer Process.
Org Lett. 2025 Aug 15;27(32):8909-8914. doi: 10.1021/acs.orglett.5c02570. Epub 2025 Aug 4.
2
Privileged Chiral Photocatalysts.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202513320. doi: 10.1002/anie.202513320. Epub 2025 Aug 1.
3
Artificial photosynthesis directed toward organic synthesis.
Nat Commun. 2025 Feb 27;16(1):1797. doi: 10.1038/s41467-025-56374-z.

本文引用的文献

1
Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction.
Angew Chem Int Ed Engl. 2024 Jun 3;63(23):e202400495. doi: 10.1002/anie.202400495. Epub 2024 May 2.
2
Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols.
Science. 2023 Oct 27;382(6669):458-464. doi: 10.1126/science.adj0040. Epub 2023 Oct 26.
3
Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines.
J Am Chem Soc. 2023 Oct 11;145(40):21738-21744. doi: 10.1021/jacs.3c08428. Epub 2023 Oct 3.
4
Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis.
Nature. 2023 Sep;621(7980):753-759. doi: 10.1038/s41586-023-06407-8. Epub 2023 Aug 23.
5
Catalytic Photochemical Deracemization via Short-Lived Intermediates.
Angew Chem Int Ed Engl. 2023 Dec 11;62(50):e202308241. doi: 10.1002/anie.202308241. Epub 2023 Sep 19.
6
Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View.
Chem Rev. 2023 Aug 9;123(15):9139-9203. doi: 10.1021/acs.chemrev.2c00482. Epub 2023 Jul 5.
7
Catalytic Deracemization Reactions.
J Am Chem Soc. 2023 May 24;145(20):10917-10929. doi: 10.1021/jacs.3c02622. Epub 2023 May 13.
8
Chemical Recycling of Thiol Epoxy Thermosets via Light-Driven C-C Bond Cleavage.
J Am Chem Soc. 2023 May 24;145(20):11151-11160. doi: 10.1021/jacs.3c00958. Epub 2023 May 11.
9
Light-empowered contra-thermodynamic stereochemical editing.
Nat Rev Chem. 2023 Jan;7(1):35-50. doi: 10.1038/s41570-022-00441-2. Epub 2022 Nov 16.
10
Energy- and atom-efficient chemical synthesis with endergonic photocatalysis.
Nat Rev Chem. 2022 Oct;6(10):745-755. doi: 10.1038/s41570-022-00421-6. Epub 2022 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验