Elam Lachlan, Quiñones-Frías Mónica C, Zhang Ying, Rodal Avital A, Fai Thomas G
Department of Mathematics, Brandeis University, Waltham, MA.
Department of Biology, Brandeis University, Waltham, MA.
SIAM J Appl Math. 2024;84(3):S476-S492. doi: 10.1137/22m1509308.
The transport of particles in cells is influenced by the properties of intracellular networks they traverse while searching for localized target regions or reaction partners. Moreover, given the rapid turnover in many intracellular structures, it is crucial to understand how temporal changes in the network structure affect diffusive transport. In this work, we use network theory to characterize complex intracellular biological environments across scales. We develop an efficient computational method to compute the mean first passage times for simulating a particle diffusing along two-dimensional planar networks extracted from fluorescence microscopy imaging. We first benchmark this methodology in the context of synthetic networks, and subsequently apply it to live-cell data from endoplasmic reticulum tubular networks.
细胞中粒子的运输受到它们在寻找局部靶区域或反应伙伴时所穿越的细胞内网络特性的影响。此外,鉴于许多细胞内结构的快速更新,了解网络结构的时间变化如何影响扩散运输至关重要。在这项工作中,我们使用网络理论来表征跨尺度的复杂细胞内生物环境。我们开发了一种高效的计算方法来计算平均首次通过时间,以模拟粒子沿从荧光显微镜成像中提取的二维平面网络扩散。我们首先在合成网络的背景下对该方法进行基准测试,随后将其应用于来自内质网管状网络的活细胞数据。