Suppr超能文献

肿瘤浸润原发性自然杀伤细胞的体内腺相关病毒-睡眠呼吸暂停综合征-成簇规律间隔短回文重复序列筛选确定了嵌合抗原受体自然杀伤细胞疗法的基因检查点。

In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy.

作者信息

Peng Lei, Renauer Paul A, Sferruzza Giacomo, Yang Luojia, Zou Yongji, Fang Zhenghao, Park Jonathan J, Chow Ryan D, Zhang Yueqi, Lin Qianqian, Bai Meizhu, Sanchez Angelica, Zhang Yongzhan, Lam Stanley Z, Ye Lupeng, Chen Sidi

机构信息

Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

System Biology Institute, Yale University, West Haven, CT, USA.

出版信息

Nat Biotechnol. 2025 May;43(5):752-761. doi: 10.1038/s41587-024-02282-4. Epub 2024 Jun 25.

Abstract

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.

摘要

自然杀伤(NK)细胞在癌症治疗方面具有临床潜力;然而,多种限制因素阻碍了NK细胞疗法的成功。在此,我们在四种实体瘤小鼠模型中使用体内腺相关病毒(AAV)-SB(睡美人转座酶)-CRISPR(成簇规律间隔短回文重复序列)筛选,对肿瘤浸润性NK(TINK)细胞进行了无偏功能图谱分析。同时,我们对TINK细胞的单细胞转录组景观进行了表征,确定了以前未被探索的NK细胞亚群和差异表达的TINK基因。作为一个共同的发现,CALHM2基因敲除(KO)的NK细胞在小鼠原代NK细胞和人嵌合抗原受体(CAR)-NK细胞中表现出增强的细胞毒性和肿瘤浸润。CALHM2信使核糖核酸逆转了CALHM2基因敲除的表型。人原代NK细胞中的CALHM2基因敲除增强了它们的细胞毒性、脱颗粒和细胞因子产生。转录组分析揭示了在基线和刺激条件下CALHM2基因敲除改变的基因和通路。在对未修饰的CAR-NK细胞耐药的实体瘤模型中,CALHM2基因敲除的CAR-NK细胞显示出强大的体内抗肿瘤功效。这些数据确定了自然限制NK细胞功能的内源性遗传检查点,并证明了使用CALHM2基因敲除来设计增强的基于NK细胞的免疫疗法。

相似文献

1
In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy.
Nat Biotechnol. 2025 May;43(5):752-761. doi: 10.1038/s41587-024-02282-4. Epub 2024 Jun 25.
3
Perturbomics of tumor-infiltrating NK cells.
bioRxiv. 2023 Mar 15:2023.03.14.532653. doi: 10.1101/2023.03.14.532653.
4
CRISPR knock-in of a chimeric antigen receptor into GAPDH 3'UTR locus generates potent B7H3-specific NK-92MI cells.
Cancer Gene Ther. 2025 Feb;32(2):227-239. doi: 10.1038/s41417-025-00872-1. Epub 2025 Jan 20.
7
Engineering of potent CAR NK cells using non-viral Sleeping Beauty transposition from minimalistic DNA vectors.
Mol Ther. 2024 Jul 3;32(7):2357-2372. doi: 10.1016/j.ymthe.2024.05.022. Epub 2024 May 14.
8
Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering.
Cell Prolif. 2025 Apr;58(4):e13791. doi: 10.1111/cpr.13791. Epub 2024 Dec 27.
10
CD38-Specific CAR Integrated into CD38 Locus Driven by Different Promoters Causes Distinct Antitumor Activities of T and NK Cells.
Adv Sci (Weinh). 2023 Sep;10(27):e2207394. doi: 10.1002/advs.202207394. Epub 2023 Jul 23.

引用本文的文献

3
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
4
Precision sniper for solid tumors: CAR-NK cell therapy.
Cancer Immunol Immunother. 2025 Jul 24;74(9):275. doi: 10.1007/s00262-025-04106-z.
6
Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology.
Front Genome Ed. 2025 Apr 11;7:1565387. doi: 10.3389/fgeed.2025.1565387. eCollection 2025.
7
Engineering innate immune cells for cancer immunotherapy.
Nat Biotechnol. 2025 Apr;43(4):516-533. doi: 10.1038/s41587-025-02629-5. Epub 2025 Apr 14.
8
Redirecting cytotoxic lymphocytes to breast cancer tumors via metabolite-sensing receptors.
bioRxiv. 2025 Mar 25:2025.03.21.644686. doi: 10.1101/2025.03.21.644686.
10
Single-cell parallel analysis of DNA damage and transcriptome reveals selective genome vulnerability.
Nat Methods. 2025 May;22(5):962-972. doi: 10.1038/s41592-025-02632-3. Epub 2025 Mar 24.

本文引用的文献

1
Natural killer cell therapies.
Nature. 2024 Feb;626(8000):727-736. doi: 10.1038/s41586-023-06945-1. Epub 2024 Feb 21.
3
Forks in the road for CAR T and CAR NK cell cancer therapies.
Nat Immunol. 2023 Dec;24(12):1994-2007. doi: 10.1038/s41590-023-01659-y. Epub 2023 Nov 27.
5
Natural killer cells: a promising immunotherapy for cancer.
J Transl Med. 2022 May 23;20(1):240. doi: 10.1186/s12967-022-03437-0.
7
Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2.
Cell Rep Med. 2022 May 17;3(5):100634. doi: 10.1016/j.xcrm.2022.100634. Epub 2022 Apr 26.
8
The ImmGen consortium OpenSource T cell project.
Nat Immunol. 2022 May;23(5):643-644. doi: 10.1038/s41590-022-01197-z.
9
Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis.
Cell. 2022 Apr 28;185(9):1521-1538.e18. doi: 10.1016/j.cell.2022.03.030. Epub 2022 Apr 20.
10
A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy.
Cell Metab. 2022 Apr 5;34(4):595-614.e14. doi: 10.1016/j.cmet.2022.02.009. Epub 2022 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验