The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
Cell Chem Biol. 2024 Aug 15;31(8):1447-1459. doi: 10.1016/j.chembiol.2024.05.018. Epub 2024 Jun 25.
Directed evolution focuses on optimizing single genetic components for predefined engineering goals by artificial mutagenesis and selection. In contrast, experimental evolution studies the adaptation of entire genomes in serially propagated cell populations, to provide an experimental basis for evolutionary theory. There is a relatively unexplored gap at the middle ground between these two techniques, to evolve in vivo entire synthetic gene circuits with nontrivial dynamic function instead of single parts or whole genomes. We discuss the requirements for such mid-scale evolution, with hypothetical examples for evolving synthetic gene circuits by appropriate selection and targeted shuffling of a seed set of genetic components in vivo. Implementing similar methods should aid the rapid generation, functionalization, and optimization of synthetic gene circuits in various organisms and environments, accelerating both the development of biomedical and technological applications and the understanding of principles guiding regulatory network evolution.
定向进化侧重于通过人工诱变和选择来优化单个遗传组件以实现预定的工程目标。相比之下,实验进化研究了在连续传代的细胞群体中整个基因组的适应,为进化理论提供了实验基础。这两种技术之间存在一个相对未被探索的中间地带的空白,即用具有非平凡动态功能的整个合成基因回路来进化,而不是单个部分或整个基因组。我们讨论了这种中规模进化的要求,并通过适当的选择和在体内对遗传组件的种子集进行靶向改组,为进化合成基因回路提供了假设性的例子。实施类似的方法应该有助于在各种生物体和环境中快速生成、功能化和优化合成基因回路,加速生物医学和技术应用的发展,并加深对指导调控网络进化的原则的理解。