Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Department of Zoology, Rampurhat College, Rampurhat 731224, India.
Int J Mol Sci. 2024 Jun 18;25(12):6681. doi: 10.3390/ijms25126681.
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
脂肪组织是能量平衡的核心参与者,表现出显著的代谢灵活性,但在肥胖症和 2 型糖尿病(T2D)中往往会受到损害。脂肪细胞内的线粒体功能障碍导致脂质处理效率降低和氧化应激增加,这两者共同促进了肥胖症及其并发症中系统性代谢紊乱的发生。本综述探讨了线粒体在改变主要脂肪细胞类型(白色、棕色和米色脂肪细胞)代谢功能方面的关键作用,特别是在肥胖症和 T2D 背景下。具体来说,在白色脂肪细胞中,这些功能障碍导致脂质处理受损和氧化应激负担增加,从而使代谢紊乱恶化。相反,受损的线粒体功能削弱了它们的产热能力,降低了棕色脂肪细胞进行最佳能量消耗的能力。米色脂肪细胞独特地结合了白色和棕色脂肪细胞的功能特性,保持与白色脂肪细胞相似的形态学特征,同时在适当的刺激下具有转化为富含线粒体、耗能细胞的能力。每种脂肪细胞都表现出独特的代谢特征,由特定于每种细胞类型的线粒体动力学决定。这些不同的线粒体代谢表型受专门的网络调节,包括转录因子、共激活因子和酶,它们共同确保了细胞能量过程的精确控制。有强有力的证据表明,肥胖症诱导的 T2D 与脂肪细胞线粒体代谢受损和上游调节因子失常有关。靶向改善脂肪细胞线粒体功能的干预措施为增强系统中大分子营养素的氧化提供了一个有前途的治疗途径,从而可能减轻肥胖症。对脂肪细胞内线粒体功能的深入理解强调了在对抗肥胖症及其相关合并症方面方法的重大转变。重新点燃脂肪组织以及肌肉和肝脏等其他重要代谢器官的卡路里燃烧至关重要,因为脂肪组织在能量储存和释放方面发挥着广泛的作用。