Suppr超能文献

PD-L1 检测的现状和进展:指导非小细胞肺癌的免疫治疗。

Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer.

机构信息

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Clin Exp Med. 2024 Jul 18;24(1):162. doi: 10.1007/s10238-024-01404-1.

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.

摘要

非小细胞肺癌(NSCLC)是癌症相关死亡的主要原因,也是全球范围内的重大疾病负担。对于没有驱动基因突变的晚期 NSCLC,免疫检查点抑制剂联合化疗是标准的一线治疗方法。程序性死亡配体 1(PD-L1)是目前唯一被批准的免疫治疗标志物。PD-L1 的检测方法多种多样,近年来发展迅速,如改良的免疫组织化学检测方法、液体活检在 PD-L1 检测中的应用、基因检测、放射性核素成像以及使用机器学习方法构建 PD-L1 预测模型。本文重点讨论了来自不同来源的 PD-L1 的检测方法和挑战,并讨论了 PD-L1 检测的影响因素和联合生物标志物的价值。为临床筛选免疫治疗优势人群和制定个体化治疗决策提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dea/11258158/b5e57aa159fa/10238_2024_1404_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验