Zhou Zhenyu, Xie Sijie, Cai Heng, Colli Alejandro N, Monnens Wouter, Zhang Qichong, Guo Wei, Zhang Wei, Han Ning, Pan Hongwei, Zhang Xueliang, Pan Hui, Xue Zhenhong, Zhang Xuan, Yao Yagang, Zhang Jin, Fransaer Jan
Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.
Universidad Nacional del Litoral, CONICET, Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.
Sci Adv. 2024 Jul 19;10(29):eado7826. doi: 10.1126/sciadv.ado7826.
For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO batteries and MoS-MnO supercapacitors with a diameter of 500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (316 Wh liter for Zn-MnO batteries and ~107 Wh liter for MoS-MnO supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.
对于可穿戴电子产品而言,径向可扩展性是纤维状储能设备实现商业化的关键研究领域之一,但由于缺乏有效的方法和配置安排,该领域已被搁置多年。在此,该团队提出了一种通用策略,通过应用同步扭转法(STM)来合成同轴可扩展配置(CEC),以实现径向可扩展性。例如,制备了直径约500μm、长度为100cm的水性纤维状锌锰电池和二硫化钼-二氧化锰超级电容器。由于CEC具有径向可扩展性、均匀的电流分布和稳定的结合力,这些设备不仅具有高能量密度(锌锰电池约为316瓦时/升,二硫化钼-二氧化锰超级电容器约为107瓦时/升),而且在施加外部弯曲和拉伸力时,能在纺织品中保持稳定的运行状态。该制造方法以及设备的径向可扩展性为未来纤维状储能设备提供了参考。