Suppr超能文献

新型 3D 打印无机-有机镁硅酸盐/PLA 复合支架促进神经血管化骨再生。

Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold.

机构信息

National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.

出版信息

Int J Biol Macromol. 2024 Oct;277(Pt 2):134185. doi: 10.1016/j.ijbiomac.2024.134185. Epub 2024 Jul 27.

Abstract

Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-MS) and fabricated it by 3D printing. With the increase of A-MS proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-MS/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-MS/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-MS and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.

摘要

临界尺寸骨缺损修复存在多种挑战,如成骨、血管生成和神经生成。目前用于骨修复的生物材料需要更多地考虑上述功能。有机-无机复合材料与生物活性离子结合,在骨再生方面具有显著优势。在我们的工作中,我们通过将聚乳酸(PLA)与 3-氨丙基三乙氧基硅烷(APTES)改性的硅酸镁(A-MS)混合,制备了一种有机-无机复合材料,并通过 3D 打印进行了制备。随着 A-MS 比例的增加,亲水性和矿化能力呈增强趋势,压缩强度和弹性模量分别从 15.29 MPa 和 94.61 MPa 增加到 44.30 MPa 和 435.77 MPa。此外,A-MS/PLA 支架不仅表现出良好的骨髓间充质干细胞(BMSCs)、人脐静脉内皮细胞(HUVECs)和雪旺细胞(SCs)的细胞相容性,而且还能有效地促进体外成骨、血管生成和神经生成。在体内植入 10%的 A-MS/PLA 支架后,与空白组和对照组(PLA)相比,支架对颅骨缺损的修复效果最为显著。此外,它们还促进了与骨再生和神经营养形成相关的蛋白质的分泌。这些结果为 A-MS 和 PLA 在骨组织工程中的应用提供了基础,并为神经血管化骨修复提供了新的概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验