Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae151.
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
生物膜通过直接和间接机制帮助细菌附着在表面上,并且生物膜的形成被认为是适应和在次优环境条件下生存的重要策略。然而,在地下沉积物/地下水生态系统中,生物膜形成的分子基础仍未得到充分探索,因为在这些系统中,微生物经常经历营养物质输入、pH 值、硝酸盐或金属浓度的波动。我们研究了从具有不同 pH 值(3.5 至 5)和硝酸盐水平(13.7 至 146 mM)的地下地下水井中分离的 16 株 Rhodanobacter 菌株在不同营养物质、pH 值、金属和硝酸盐处理下的生物膜形成情况。八种 Rhodanobacter 菌株在低 pH 值下表现出显著的生物膜生长,表明它们适应在低 pH 值下生存和生长。在铝胁迫下,生物膜加剧,特别是在具有较少与生物膜形成相关遗传特征的菌株中,这一发现值得进一步研究。通过随机条码转座子测序 (RB-TnSeq)、蛋白质组学、使用特定突变体和透射电子显微镜分析,我们发现铝胁迫下鞭毛丧失,表明运动性、金属耐受性和生物膜生长之间可能存在关系。比较基因组分析显示,高度生物膜形成菌株 FW021-MT20 中缺乏鞭毛和趋化性基因,存在一个假定的 VI 型分泌系统。在这项研究中,我们确定了与金属胁迫下生物膜生长相关的遗传决定因素,这在主要的环境属 Rhodanobacter 中,并且确定了有助于生存和适应污染的地下环境的特征。