Suppr超能文献

深度神经网络时代肿瘤学中的多模态数据整合:综述

Multimodal data integration for oncology in the era of deep neural networks: a review.

作者信息

Waqas Asim, Tripathi Aakash, Ramachandran Ravi P, Stewart Paul A, Rasool Ghulam

机构信息

Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States.

Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States.

出版信息

Front Artif Intell. 2024 Jul 25;7:1408843. doi: 10.3389/frai.2024.1408843. eCollection 2024.

Abstract

Cancer research encompasses data across various scales, modalities, and resolutions, from screening and diagnostic imaging to digitized histopathology slides to various types of molecular data and clinical records. The integration of these diverse data types for personalized cancer care and predictive modeling holds the promise of enhancing the accuracy and reliability of cancer screening, diagnosis, and treatment. Traditional analytical methods, which often focus on isolated or unimodal information, fall short of capturing the complex and heterogeneous nature of cancer data. The advent of deep neural networks has spurred the development of sophisticated multimodal data fusion techniques capable of extracting and synthesizing information from disparate sources. Among these, Graph Neural Networks (GNNs) and Transformers have emerged as powerful tools for multimodal learning, demonstrating significant success. This review presents the foundational principles of multimodal learning including oncology data modalities, taxonomy of multimodal learning, and fusion strategies. We delve into the recent advancements in GNNs and Transformers for the fusion of multimodal data in oncology, spotlighting key studies and their pivotal findings. We discuss the unique challenges of multimodal learning, such as data heterogeneity and integration complexities, alongside the opportunities it presents for a more nuanced and comprehensive understanding of cancer. Finally, we present some of the latest comprehensive multimodal pan-cancer data sources. By surveying the landscape of multimodal data integration in oncology, our goal is to underline the transformative potential of multimodal GNNs and Transformers. Through technological advancements and the methodological innovations presented in this review, we aim to chart a course for future research in this promising field. This review may be the first that highlights the current state of multimodal modeling applications in cancer using GNNs and transformers, presents comprehensive multimodal oncology data sources, and sets the stage for multimodal evolution, encouraging further exploration and development in personalized cancer care.

摘要

癌症研究涵盖了各种规模、模式和分辨率的数据,从筛查和诊断成像到数字化组织病理学切片,再到各种类型的分子数据和临床记录。将这些不同类型的数据整合用于个性化癌症护理和预测建模,有望提高癌症筛查、诊断和治疗的准确性和可靠性。传统分析方法往往侧重于孤立或单模态信息,无法捕捉癌症数据的复杂和异质性。深度神经网络的出现推动了复杂多模态数据融合技术的发展,这些技术能够从不同来源提取和合成信息。其中,图神经网络(GNN)和Transformer已成为多模态学习的强大工具,并取得了显著成功。本文综述介绍了多模态学习的基本原理,包括肿瘤学数据模式、多模态学习的分类以及融合策略。我们深入探讨了GNN和Transformer在肿瘤学多模态数据融合方面的最新进展,重点介绍了关键研究及其重要发现。我们讨论了多模态学习的独特挑战,如数据异质性和整合复杂性,以及它为更细致和全面地理解癌症带来的机遇。最后,我们介绍了一些最新的全面多模态泛癌数据源。通过审视肿瘤学多模态数据整合的现状,我们的目标是强调多模态GNN和Transformer的变革潜力。通过本文综述中介绍的技术进步和方法创新,我们旨在为这一充满前景的领域的未来研究指明方向。这篇综述可能是第一篇突出使用GNN和Transformer进行癌症多模态建模应用的现状、介绍全面多模态肿瘤学数据源,并为多模态发展奠定基础,鼓励在个性化癌症护理方面进行进一步探索和发展的文章。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c06/11308435/f0f8260634d4/frai-07-1408843-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验