Suppr超能文献

对多种群居蜜蜂肠道相关的吉氏菌属进行的基因组研究揭示了能量代谢的保守途径,以及多样且可变的能量来源。

Genomic investigations of diverse corbiculate bee gut-associated Gilliamella reveal conserved pathways for energy metabolism, with diverse and variable energy sources.

作者信息

Nguyen Viet Hung

机构信息

Project Genomes To Functional, Ecological, and Evolutionary Characterizations (Project G2FEEC), Ho Chi Minh City, Vietnam.

出版信息

Access Microbiol. 2024 Aug 15;6(8). doi: 10.1099/acmi.0.000793.v3. eCollection 2024.

Abstract

is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through and experiments focused on the type species . This study examined 95 publicly available genomes representing at least 18 species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the but also other members of the family . Evidence suggests are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all and acetoin for some strains. According to genomic evidence examined, all are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phospho-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.

摘要

是一种细菌属,通常作为群居蜜蜂的共生体被发现。对该属能量代谢的研究主要通过针对模式种进行的[具体实验方式1]和[具体实验方式2]实验来完成。本研究检查了95个公开可用的基因组,这些基因组代表了至少18种主要从群居蜜蜂后肠分离出的[细菌名称]物种。发现能量代谢途径不仅在[细菌名称]中高度保守,在该科的其他成员中也是如此。有证据表明[细菌名称]能够发酵富马酸盐和丙酮酸。前者发酵产生琥珀酸盐。后者发酵对所有[细菌名称]菌株可产生乙酸盐、乙醇、甲酸盐和两种乳酸异构体,对一些[细菌名称]菌株可产生乙偶姻。根据所检查的基因组证据,所有[细菌名称]仅在微氧条件下能够进行呼吸作用,而较高的氧气条件可能会抑制呼吸作用。有证据表明糖酵解和磷酸戊糖途径是能量来源代谢的重要机制,三羧酸循环在所有[细菌名称]物种的能量代谢中几乎不起作用。能量来源(即糖和衍生物)的摄取可能主要依赖于磷酸丙酮酸依赖性磷酸转移酶系统。所利用能量来源的差异可能赋予与特定宿主物种相关的适应性优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/105d/11325843/ebba7edbdbff/acmi-6-00793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验