Jin Hui, Kong Fanhao, Li Xiangyu, Shen Jie
College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
Environ Res. 2024 Dec 1;262(Pt 1):119812. doi: 10.1016/j.envres.2024.119812. Epub 2024 Aug 16.
The rising prevalence of microplastics (MPs) in various ecosystems has increased the demand for advanced detection and mitigation strategies. This review examines the integration of artificial intelligence (AI) with environmental science to improve microplastic detection. Focusing on image processing, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and hyperspectral imaging (HSI), the review highlights how AI enhances the efficiency and accuracy of these techniques. AI-driven image processing automates the identification and quantification of MPs, significantly reducing the need for manual analysis. FTIR and Raman spectroscopy accurately distinguish MP types by analyzing their unique spectral features, while HSI captures extensive spatial and spectral data, facilitating detection in complex environmental matrices. Furthermore, AI algorithms integrate data from these methods, enabling real-time monitoring, traceability prediction, and pollution hotspot identification. The synergy between AI and spectral imaging technologies represents a transformative approach to environmental monitoring and emphasizes the need to adopt innovative tools for protecting ecosystem health.
微塑料(MPs)在各种生态系统中的日益普遍,增加了对先进检测和缓解策略的需求。本综述探讨了人工智能(AI)与环境科学的整合,以改进微塑料检测。该综述聚焦于图像处理、傅里叶变换红外光谱(FTIR)、拉曼光谱和高光谱成像(HSI),强调了人工智能如何提高这些技术的效率和准确性。人工智能驱动的图像处理实现了微塑料的自动识别和量化,显著减少了人工分析的需求。FTIR和拉曼光谱通过分析微塑料独特的光谱特征准确区分其类型,而HSI则捕获广泛的空间和光谱数据,便于在复杂环境基质中进行检测。此外,人工智能算法整合了这些方法的数据,实现了实时监测、可追溯性预测和污染热点识别。人工智能与光谱成像技术之间的协同作用代表了一种变革性的环境监测方法,并强调了采用创新工具保护生态系统健康的必要性。