Suppr超能文献

同时筛选针对 SARS-CoV-2、拉沙和马丘波病毒进入的抑制剂。

Simultaneous screening for selective SARS-CoV-2, Lassa, and Machupo virus entry inhibitors.

机构信息

Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States.

Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.

出版信息

SLAS Discov. 2024 Sep;29(6):100178. doi: 10.1016/j.slasd.2024.100178. Epub 2024 Aug 17.

Abstract

Emerging highly pathogenic viruses can pose profound impacts on global health, the economy, and society. To meet that challenge, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) centers for early-stage identification and validation of novel antiviral drug candidates against viruses with pandemic potential. As part of this initiative, we established paired entry assays that simultaneously screen for inhibitors specifically targeting SARS-CoV-2 (SARS2), Lassa virus (LASV) and Machupo virus (MACV) entry. To do so we employed a dual pseudotyped virus (PV) infection system allowing us to screen ∼650,000 compounds efficiently and cost-effectively. Adaptation of these paired assays into 1536 well-plate format for ultra-high throughput screening (uHTS) resulted in the largest screening ever conducted in our facility, with over 2.4 million wells completed. The paired infection system allowed us to detect two PV infections simultaneously: LASV + MACV, MACV + SARS2, and SARS2 + LASV. Each PV contains a different luciferase reporter gene which enabled us to measure the infection of each PV exclusively, albeit in the same well. Each PV was screened at least twice utilizing different reporters, which allowed us to select the inhibitors specific to a particular PV and to exclude those that hit off targets, including cellular components or the reporter proteins. All assays were robust with an average Z' value ranging from 0.5 to 0.8. The primary screening of ∼650,000 compounds resulted in 1812, 1506, and 2586 unique hits for LASV, MACV, and SARS2, respectively. The confirmation screening narrowed this list further to 60, 40, and 90 compounds that are unique to LASV, MACV, and SARS2, respectively. Of these compounds, 8, 35, and 50 compounds showed IC value < 10 μM, some of which have much greater potency and excellent antiviral activity profiles specific to LASV, MACV, and SARS2, and none are cytotoxic. These selected compounds are currently being studied for their mechanism of action and to improve their specificity and potency through chemical modification.

摘要

新兴的高致病性病毒会对全球健康、经济和社会造成深远影响。为了应对这一挑战,美国国立过敏和传染病研究所 (NIAID) 建立了九个抗病毒药物发现 (AViDD) 中心,以早期识别和验证针对具有大流行潜力的病毒的新型抗病毒药物候选物。作为该计划的一部分,我们建立了配对的进入检测,以同时筛选针对 SARS-CoV-2 (SARS2)、拉沙病毒 (LASV) 和马丘波病毒 (MACV) 进入的特异性抑制剂。为此,我们采用了双假病毒 (PV) 感染系统,使我们能够高效、经济地筛选约 65 万种化合物。将这些配对检测法适应到 1536 孔板格式进行超高通量筛选 (uHTS),使我们的设施完成了有史以来最大规模的筛选,完成了超过 240 万个孔。配对感染系统使我们能够同时检测两种 PV 感染:LASV+MACV、MACV+SARS2 和 SARS2+LASV。每种 PV 都含有不同的荧光素酶报告基因,使我们能够专门测量每种 PV 的感染,尽管它们在同一个孔中。每种 PV 都利用不同的报告基因进行了至少两次筛选,这使我们能够选择针对特定 PV 的抑制剂,并排除那些针对非靶标(包括细胞成分或报告蛋白)的抑制剂。所有的检测都很稳健,平均 Z' 值在 0.5 到 0.8 之间。对约 65 万种化合物的初步筛选分别产生了 1812、1506 和 2586 种 LASV、MACV 和 SARS2 的独特命中化合物。确认筛选进一步将这一列表缩小到分别针对 LASV、MACV 和 SARS2 的 60、40 和 90 种独特化合物。在这些化合物中,有 8、35 和 50 种化合物的 IC 值<10 μM,其中一些具有更强的效力和针对 LASV、MACV 和 SARS2 的优异抗病毒活性谱,且无细胞毒性。这些选定的化合物目前正在研究其作用机制,并通过化学修饰来提高其特异性和效力。

相似文献

1
Simultaneous screening for selective SARS-CoV-2, Lassa, and Machupo virus entry inhibitors.
SLAS Discov. 2024 Sep;29(6):100178. doi: 10.1016/j.slasd.2024.100178. Epub 2024 Aug 17.
2
High throughput screening for SARS-CoV-2 helicase inhibitors.
SLAS Discov. 2024 Sep;29(6):100180. doi: 10.1016/j.slasd.2024.100180. Epub 2024 Aug 22.
3
SARS-CoV-2 M inhibitor identification using a cellular gain-of-signal assay for high-throughput screening.
SLAS Discov. 2024 Sep;29(6):100181. doi: 10.1016/j.slasd.2024.100181. Epub 2024 Aug 22.
4
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
9
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
10
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618.

本文引用的文献

2
The development and application of pseudoviruses: assessment of SARS-CoV-2 pseudoviruses.
PeerJ. 2023 Dec 6;11:e16234. doi: 10.7717/peerj.16234. eCollection 2023.
3
Therapeutic strategies for COVID-19: progress and lessons learned.
Nat Rev Drug Discov. 2023 Jun;22(6):449-475. doi: 10.1038/s41573-023-00672-y. Epub 2023 Apr 19.
7
Lead identification using 3D models of pancreatic cancer.
SLAS Discov. 2022 Apr;27(3):159-166. doi: 10.1016/j.slasd.2022.03.002. Epub 2022 Mar 17.
8
Identification of potent small molecule inhibitors of SARS-CoV-2 entry.
SLAS Discov. 2022 Jan;27(1):8-19. doi: 10.1016/j.slasd.2021.10.012. Epub 2021 Oct 23.
9
Mechanisms of SARS-CoV-2 entry into cells.
Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20. doi: 10.1038/s41580-021-00418-x. Epub 2021 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验